HIM@RISP.2016.11.25

### Introduction of DJBUU : New Transport code

Chang-Hwan Lee / Pusan National University

partially on behalf of DJBUU Project





a pure Korean word meaning Delightful, Joyful, Happy, ...

in 2011, Korean government approved a Rare Isotope Accelerator Project

1

#### My recent works have been related to neutron stars

- NS EoS / Dense Matter
- NS Binary Evolution / Gravitational Waves

#### for RAON

better to start from where you have an advantage

#### Some experience on Heavy Ion Collisions at Stony Brook

3

- Lee, Wirstam, Zahed, Hansson, PLB 448, 168 (1999)
- Lee, Yamagishi, Zahed, PRC 58, 2899 (1998)
- Lee, Yamagishi, Zahed, NPA 653, 185 (1999)

Contents

Part I : EM Radiation for RHIC & LHC

Part II : DJBUU for Rare Isotope Collisions

#### Part I: EM Radiation in Hot QCD Matter

in collaboration with Y.M. Kim (PNU), D. Teaney, I. Zahed (Stony Brook) PRC 90, 025204 (2014) & arXiv:1610.06213

#### Why Photons & Dileptons ?

- No strong interaction
- Can provide direct information on dense medium
- · Right time to revisit

R.Rapp, arXiv:1306.6394





#### STAR Dilepton Enhancement Au+Au 200 GeV



7



9

#### STAR Au+Au 200 GeV

#### arXiv:1305.5447



#### ALICE Pb+Pb 2.76 TeV

**Elliptic Flow** 



#### Theory vs Experiment



11

#### Dilepton rates from hadronic gas



#### **Pionic Gas**

#### Mixing between vector-axial : Chiral symmetry restoration



- As pion chemical potential increase
  - Reduction of Vector Contribution due to the cancellation (no pion + pion contribution)
  - Enhancement of Axial Contribution

Lee & Zahed PRC 90, 025204 (2014)

15

#### Dilepton Rates up to two pion



Low-mass enhancement due to mixing between vector & axial

Lee & Zahed PRC 90, 025204 (2014)

#### Conclusion of Part I

- · Low-mass dilepton enhancement (PRC 90, 025204, 2014)
  - partial restoration of chiral symmetry
  - mixing between vector & axial correlators
- Charged particle elliptic flow (arXiv:1610.06213)
  - pion is better than (anti-)proton
  - hadronic rates dominate the photon emissivity rates
  - still misses ALICE high qT data

#### • Future Plan

- inclusion of nucleons for STAR BES

17

#### Part II

DJBUU

## DJBUU project

- What is DJBUU
   Dae Jeon Boltzmann-Uehling-Uhlenbeck
- Current collaboration members
   S. Jeon (McGill, chair) at RISP during 2015.10~2016.01
   Y. Kim, J. Hong, K. Kim (RISP)
   M.K.Kim, Y.M. Kim, C.-H. Lee (PNU)
- Supported by RISP

### Contents of Part II

- 1. Boltzmann-Uehling-Uhlenbeck (BUU)
- 2. Daejeon Boltzmann-Uehling-Uhlenbeck (DJBUU)
- 3. What has been done before with RBUU
  - Sn + Pb @ 200 MeV/u
  - Xe + Pb @ 200 MeV/u
  - Au + Au @ 200 MeV/u
- 4. What we are doing now
  - Single Au density profile
  - Au + Au @ 100 MeV/u
  - Pauli Blocking factor
- 5. Summary and Plan

#### Nuclear transport theory

- Treats non-equilibrium process
- One-body phase-space distribution in heavy-ion collision
   *mean field* + *two-body collision* + *Pauli blocking*
- · Boltzmann-Vlasov type :

- evolution of the one-body phase-space density under the influence of a mean field

molecular-dynamics type :

- nucleon coordinates and momenta under the action of a many-body Hamiltonian

#### test particle

- solve nonlinear integro-differential eq. (= BUU eq.)

### Relativistic mean field theory

$$\mathcal{L} = \bar{\psi} \left[ i\partial \!\!\!/ - (m_N - g_\sigma \sigma) - g_\omega \phi - g_\rho \vec{\tau} \cdot \vec{\rho} \right] \psi$$

$$+ \frac{1}{2} \left( \partial_\mu \sigma \partial^\mu \sigma - m_\sigma^2 \sigma^2 \right) - \frac{1}{3} a \sigma^3 + \frac{1}{4} b \sigma^4$$

$$+ \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - \frac{1}{4} \left( \partial_\mu \omega_\nu - \partial_\nu \omega_\mu \right) \left( \partial^\mu \omega^\nu - \partial^\nu \omega^\mu \right)$$

$$+ \frac{1}{2} m_\rho^2 \vec{\rho}_\mu \cdot \vec{\rho}^\mu - \frac{1}{4} \left( \partial_\mu \vec{\rho}_\nu - \partial_\nu \vec{\rho}_\mu \right) \cdot \left( \partial^\mu \vec{\rho}^\nu - \partial^\nu \vec{\rho}^\mu \right) .$$

$$\frac{Parameter}{f_\sigma (fm^2)} \qquad Set I \qquad Set II \\ f_\sigma (fm^2) \qquad 5.42 \qquad same \\ f_\rho (fm^2) \qquad 0.95 \qquad 3.15 \\ f_\delta (fm^2) \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.033 \qquad same \\ B \qquad -0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.033 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 2.50 \\ A (fm^{-1}) \qquad 0.0048 \qquad same \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00 \qquad 0.00 \\ \frac{Parameter}{f_\sigma (fm^2)} \qquad 0.00$$

Phys. Rev. C, 65, 045201 (2002)

- Describe nuclear structure (phenomenological)
- Applied from finite nuclei to neutron star
- Mean field theory including σ, ω, ρ meson fields (exclude δ-meson field in DJBUU simulation)

Boltzmann-Uehling-Uhlenbeck eq.

$$\begin{split} & \left[\tilde{k}\cdot\partial^{(x)} + \left(\tilde{k}_{\nu}F^{\mu\nu} + m^{\star}\partial^{\mu}m^{\star}\right)\partial^{(\tilde{k})}_{\mu}\right]f(x,\tilde{k})|_{\tilde{k}=k_{1}+\Sigma} \\ &= \frac{1}{2}\int \mathcal{D}_{k_{2},k_{3},k_{4}}W(k_{1}k_{2}|k_{3}k_{4})\delta^{4}(k_{1}+k_{2}-k_{3}-k_{4}) \\ & \times \left[f_{3}f_{4}(1-f_{1})(1-f_{2})-f_{1}f_{2}(1-f_{3})(1-f_{4})\right]. \end{split}$$

- Boltzmann eq. collision term
- Uehling-Uhlenbeck eq. Pauli-blocking factor
- Time evolution of the one-body phase-space density under the mean field potential

## Numerical realization

#### **RBUU** code : simulate Heavy-ion collisions

- 1995, first developed in Munich (C. Fuchs)
- 1996-2000, density-dep. RMF models, DBHF approaches (T. Gaitanos, C. Fuchs)
- 2002-2005, isospin effects in the production thresholds (G. Ferini, T. Gaitanos)
- 2005-2010, in-medium isospin effects in cross sections&kaon pot. (V. Prassa, T. Gaitanos)
- 2014, improvement in stability (RISP)

#### Test particle method > Parallel ensemble method

single particle phase-space distribution function represented by N covariant Gaussian test particles

$$g(x, x_{i}) = \frac{1}{(\pi \sigma^{2})^{3/2}} e^{[(x_{\mu} - x_{i\mu})^{2} - ((x_{\mu} - x_{i\mu})u_{i}^{\mu})^{2}]/\sigma^{2}}$$

$$g(k^{*}, k_{i}^{*}) = \frac{1}{(\pi \sigma_{k}^{2})^{3/2}} e^{[k_{\mu}^{*2} - (k_{\mu}^{*}u_{i}^{\mu})^{2}]/\sigma_{k}^{2}}$$

$$f(x, k^{*}) = \frac{1}{N} \sum_{i=1}^{AN} g(x, x_{i})g(k^{*}, k_{i}^{*})$$

$$\nabla = 1.4 \text{fm}$$

$$\sigma_{k} = 0.346 \text{fm}^{-1}$$

$$N = 100$$

slide from Y.J. Lee

Baryon density

$$\rho_B(x) = \frac{1}{N} \sum_{i=1}^{AN} g(x, x_i) u_{i0}$$

 $\rho_I(x) = \frac{\left[\rho_n(x) - \rho_p(x)\right]}{\rho_B(x)}$ 

Isospin asymmetry

Local temperature by a fit of the **RBUU momentum distribution** to the **Fermi-Dirac distribution**, assuming **local thermodynamic equilibrium** 



#### RBUU results (what has been done before)

JKPS,69, 1430 (2016), Y. Lee, C.-H. Lee, T. Gaitanos, Y. Kim NPSM (2017), Myungkuk Kim, Y. Lee, Y. M. Kim, C.-H. Lee

#### Result 1 : <sup>132</sup>Sn + <sup>208</sup>Pb @ 200 MeV/u



- Nuclear structure : near the magic number 126
- · Neutron star internal structure
- Dense matter : symmetry energy and collective flow
- <sup>140</sup>Xe + <sup>208</sup>Pb : similar evolution history for density and momentum

### Central density and effective temperature



- Central density reaches up to  $2\rho_0$  (~0.16 fm<sup>-3</sup>) at t = 36 ~ 38 fm/c
- Symmetry energy  $\propto$  density (excluding  $\delta$ -meson field)
- T (MeV) 27.1 and 27.8 @ 36 fm/c
- +  $\mu_{B}$  (MeV) 721.7 and 706.3 @ 36 fm/c

#### Result 2 : <sup>197</sup>Au + <sup>197</sup>Au @ 200 MeV/u





[fm]

Time evolution of baryon density and isospin asymmetry at the center



 $(\rho_0 : saturation density, \sim 0.16 fm^{-3})$ 

slide from Y.J. Lee 29



► The first application of a transport model to HIC at low energy.

- Simulation of HIC by using the RBUU transport code for estimation of properties of nuclear matter that is expected to be created in RAON
- Baryon density, isospin asymmetry, local temperature for <sup>132</sup>Sn + <sup>208</sup>Pb and <sup>140</sup>Xe + <sup>208</sup>Pb @ 200AMeV :  $\rho_{max} \sim 2\rho_0$ ,  $\rho_I \sim 0.1$ ,  $T_{loc} \sim 27$  MeV.
- Quantitative discussion on the possibility of QCD phase transition, liquidgas phase transition, pion condensation, ...etc. at **RAON**
- Simulations with more neutron-rich isotopes/deformed nuclei.
- Ongoing development of advanced transport calculation code for better results.

slide from Y.J. Lee 31

### DJBUU

### Daejeon Boltzmann-Uehling-Uhlenbeck eq.

- c / c++ language
- openMP (Open Multi-Processing) implemented
- easy to follow & modify
- simulated mainly in Mac OSX

| E_beam_NN_for_Heavy_Ion_Collision_in_GeV 0.2            |
|---------------------------------------------------------|
| Record_p_n_densities_at_the_center_1_for_on_0_for_off 1 |
| Radius_for_density_calc_in_fm 3.0                       |
| Record_interval 10                                      |
| Record_particle_states_1_for_on_0_for_off 1             |
| Record_Interval 10                                      |
| Turn_on_Coulomb_1_for_on_0_for_off 0                    |
| Number_of_grid_points_in_x 100                          |
| SigmaNN_CutOff_in_mb 50                                 |
| Uncertainty_param_dxdp 0.6                              |
|                                                         |

#### RBUU code

- 1995, first developed in Munich (C. Fuchs)
- 1996-2000, density-dep. RMF models, DBHF approaches (T. Gaitanos, C. Fuchs)
- 2002-2005, isospin effects in the production thresholds (G. Ferini, T. Gaitanos)
- 2005-2010, in-medium isospin effects in cross sections&kaon pot. (V. Prassa, T. Gaitanos)

2014, improvement in stability (RISP)

### DJBUU preliminary results

- time evolution of single Au density profile
- average density contours in Au + Au collision @ 100 MeV/u (b=7 fm)
- Pauli blocking

NPSM, RI Science Special Issue, M. Kim, CHL, Y.Kim, S. Jeon

#### DJBUU vs RBUU result

# 현재 직접적인 비교 불가 할 것으로 판단됩니다. (comments by Myungkuk Kim)

fm/c

### Single Au density profile (preliminary)



#### Au + Au collision @ 100 MeV/u (b=7 fm) (preliminary)



#### Pauli Blocking factor (for one case) (preliminary)



- B:100 MeV/u
- Cascade turn off the mean field (collision term)
- Pauli Blocking factor = 1 (successful / attempted)

## Part II: Summary & Plan

#### · DJBUU

- new BUU-type code is developed.
- DJBUU code is stable, but still preliminary.
- requires fine tuning.

#### · Plan

- test new equation of states