Directed flow in Ni+Ni and Au+Au collisions and the QMD simulation

<u>Kyungil Kim</u>

Nov. 25th , 2016, HIM

Contents

- I. Motivation
- II. Introduction to QMD
- III. Directed flow in Ni+Ni and Au+Au
- IV. Summary and Outlook

RAON and **LAMPS**

b^S 기초과학연구원 Institute for Basic Science

Nuclear Equation of State

Nuclear Equation of State

Au (100 MeV/n)+Au at b=7fm

Initialization

<Density distribution> - Wood-Saxon function

$$\rho = \rho_0 \left[1 + \exp\left\{\frac{r-R}{a}\right\} \right]^{-1}$$

7

Stability of Ni Nucleus

Propagation

$$H = \sum_{i} \frac{\vec{p_i}^2}{2m} + U^{2body} + U^{3body} + U^{surf} + U^{sym} + U^{Coul}$$

,

$$U^{2body} = \frac{\alpha}{2\rho_0} \sum_{i,j \neq i} \rho_{ij},$$
$$U^{3body} = \frac{\beta}{\gamma + 1} \sum_i \left(\sum_{j \neq i} \frac{\rho_{ij}}{\rho_0} \right)^{\gamma}$$

$$U^{surf} = \frac{g_{surf}}{2\rho_0} \sum_{i,j \neq i} \nabla^2_{r_i}(\rho_{ij}),$$

$$U^{sym} = \frac{g_{sym}}{2\rho_0} \sum_{i,j\neq i} [2\delta_{\tau_i\tau_j} - 1]\rho_{ij},$$

$$U^{Coul} = \frac{e^2}{2} \sum_{i,j\neq i} \frac{1}{|\vec{r_i} - \vec{r_j}|} \operatorname{erf}\left(\frac{|\vec{r_i} - \vec{r_j}|}{2\sigma_r}\right) \quad (i, j \text{ for protons})$$

$$Ref M Papa PRC$$

Skyrme parametrization for NN potential

$\mathrm{K}(\mathrm{MeV})$	$\alpha~({\rm MeV})$	$\beta({\rm MeV})$	γ	EOS
200	-356	303	7/6	Soft
380	-124	70.5	2	Hard

Ref.) M. Papa PRC 64(2010)024612

<Equation of Motion>

$$\frac{d\vec{r_i}}{dt} = \frac{\vec{p_i}}{\mu} \qquad \frac{d\vec{p_i}}{dt} = -\nabla_{r_i} U$$

N-N Collision

In classical scattering,

 $b < r_1 + r_2$

Two particles are always scattered.

In our model,

 $b = \sqrt{\sigma_{tot}/(10 \times \pi)},$ (b: [fm], σ : [mb])

If a distance, d, between two nucleons is smaller than b, d<b, a collision is always tried.

Here, σ_{tot} is in-medium cross-section.

$$\frac{\Delta \,\boldsymbol{\kappa} \cdot \boldsymbol{p}}{\boldsymbol{p}} \bigg| < \frac{\boldsymbol{p}}{2m_1} + \frac{\boldsymbol{p}}{2m_2} \boldsymbol{\delta} t \frac{\boldsymbol{\delta} t}{2}$$

N-N Collision

Pauli blocking

<Phase space density for *i* th particle>

 $\bar{f}_i \equiv \sum_i \delta_{\tau_i, \tau_j} \delta_{s_i, s_j} \int_{h^3} f_i(\vec{r}, \vec{p}) \, d^3r d^3p$

Occupation number

Cluster Recognition

<Minimum Spanning Tree (MST)>

Disconnected if a length is larger than 3.5 fm.

Differential Flow

p_x distribution

Potential + Collisions

Potential only

Collisions only

Role of NN Collision

w/o collisions

w/ collisions

Comparison with FOPI data

v_1 of Ni+Ni and Au+Au

Density at Collision Center

Difference between proton and neutron

Summary and Outlook

- RAON facility will provide opportunities to study isospin asymmetric matters and exotic nuclei by heavy-ion collisions induced by neutron-rich beams.
- ✤ As a reliable theoretical tools, we need a transport model.
- Differential flow is one of the probes for the symmetry potential study.
- We need more study to find an observable which is sensitive to the change of the curvature of symmetry potential.

Thank you for your attention!!

Backup Slides

Transport model

