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Motivation: inelastic cross section
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§ Total cross section in p-p collisions

Ø 𝜎()( = 𝜎*+ + 𝜎-./0, and 𝜎-./0 increases faster than 𝜎*+ at high energies due to contributions 
from diffractive processes. Therefore, the diffraction can’t be ignored at high energies.

Ø 𝜎-./0 = 𝜎1)1#2344.(.7) + 𝜎931:+*#2344.(;7) + 𝜎2)<=+*#2344.(77) + 𝜎>*1(?@+#2344.(A7) +⋯
arXiv:1305.7216v2

𝒔 (TeV) 𝝈𝐒𝐃/𝝈𝐈𝐍𝐄𝐋 𝝈𝐃𝐃/𝝈𝐈𝐍𝐄𝐋
0.9 0.21 ± 0.03 0.11 ± 0.03

2.76 0.20#Q.QR"Q.QS 0.12 ± 0.05
7 0.20#Q.QS"Q.QU 0.12#Q.QU"Q.QV

arXiv:1208.4968v1

SD+DD contribute
30% of INEL

arXiv:1208.4968v1
(ALICE)



Motivation: diffractive processes

2016. 11. 26. HIM Meeting 4

§ In Regge theory, all diffractive processes can be described by Pomeron at high energies.

Ø Pomeron: colour singlet object with the quantum number of the vacuum

Ø While SD and DD are explained by single-Pomeron exchange, 
CD is dominated by double-Pomeron exchange (DPE).

§ The diffraction is defined when the momentum transfer of incoming proton is much less than the 
centre-of-mass energy.

Ø Single Diffraction (SD): one proton is intact and one proton dissociates, 𝑝X + 𝑝Y → 𝑝X′ + 𝑋Y
Ø Double Diffraction (DD): two protons dissociate, 𝑝X + 𝑝Y → 𝑋X+ 𝑋Y
Ø Central Diffraction (CD): two protons are intact, 𝑝X + 𝑝Y → 𝑝X′ + 𝑋 + 𝑝Y′

Feynmann diagrams of single (left), double (middle), and central (right) diffraction with Pomeron exchange,
arXiv:1005.3894

: Pomeron



Motivation: central diffraction (central production)

2016. 11. 26. HIM Meeting 5

§ Central diffraction, 𝑝X + 𝑝Y → 𝑝X′ + 𝑋 + 𝑝Y′

Ø produce interesting system 𝑋 such as glueballs and hybrid 
due to glue-rich nature of Pomeron.

Ø restrict the quantum numbers of the produced system 𝑋 (𝐼^𝐽`a = 0"even""), so final states 
can be 𝜋"𝜋#,𝐾"𝐾#,𝜋"𝜋#𝜋"𝜋#, etc. The 𝜋"𝜋# had been analyzed in other experiments, 
𝑓Q(𝟗𝟖𝟎)(𝑱𝑷𝑪 = 𝟎"")	and 𝒇𝟐 𝟏𝟐𝟕𝟎 (𝑱𝑷𝑪 = 𝟐"") are observed in the 𝜋"𝜋# final states.

§ The goal is to investigate 𝜋"𝜋# final states in CD and provide properties of produced particles.

CMS result, arXiv:1610.08775v2 COMPASS result, arXiv:1310.3190v1

𝑓Q(𝟗𝟖𝟎)

𝑓Y(𝟏𝟐𝟕𝟎)
𝑓Q(𝟗𝟖𝟎)

𝑓Y(𝟏𝟐𝟕𝟎)

7TeV beam E = 190GeV/c
𝜎s` is higher than CMS
→ 𝜌Q 770 (𝐽`a = 1##)

𝜌Q(770)



Data analysis: double gap topology
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§ Even though A Large Ion Collider Experiment (ALICE) is dedicated experiment for heavy-ion 
collisions, ALICE is suitable for investigating central diffraction in p-p collisions.

§ Double gap topology

Ø 𝑝X + 𝑝Y → 𝑝X′ + 𝑋 + 𝑝Y′ can be identified if all protons are measured.

Ø ALICE can’t detect outgoing protons (𝑝X′,𝑝Y′) due to absent of very forward detectors.

Ø Alternatively, we can use double gap (DG) topology to identify CD.

• While intact protons have large pseudorapidity (𝜂), the produced system 𝑋 has very 
small 𝜂 because of small momentum transfers.

• Thus, we have two gaps between intact protons and the produced system 𝑋.

Central diffraction with DPE and rapidity distribution of produced particles, arXiv:1005.3894

gap 1 gap 2

gap 1

gap 2

𝑝X′

𝑝Y′
𝑋



Data analysis: ALICE detectors
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§ Double gap topology in ALICE as a trigger

Ø This trigger was not implemented as online in Run1. Therefore, we use 
offline information to reconstruct the DG trigger.

Ø Requirement: some signals in central regions without any activities in forward gaps.

Ø ALICE has V0, FMD at forward regions to detect gaps and SPD to measure centrally 
produced signal as trigger detectors.

Ø DG in ALICE: !V0C & !V0A & SPD, where & (!) is logical AND (NOT)

• No signals on V0A,C side and at least one fired chip in SPD

• Sub-sample: !FMDC & !V0C & !FMDA & !V0A & SPD (enhanced gap definition)

TPC: −0.9 < 𝜂 < 0.9
SPD outer layer: −2 < 𝜂 < 2
SPD inner layer: −1.4 < 𝜂 < 1.4
V0A: 2.8 < 𝜂 < 5.1
V0C: −3.7 < 𝜂 < −1.7
FMDA: 1.7 < 𝜂 < 5.1
FMDC: −3.4 < 𝜂 < −1.7



Data analysis: ALICE detectors
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§ Trigger: V0, Forward Multiplicity Detector (FMD), Silicon Pixel Detector (SPD)

§ Tracking: Inner Tracking System (ITS) + Time Projection Chamber (TPC)

§ Particle Identification (PID) :ITS, TPC, Time Of Flight (TOF)

ALICE shcematic view, arXiv:1402.4476

TPC dE/dx, arXiv:1402.4476

TOF particle velocity, arXiv:1402.4476



Data analysis: dataset
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§ Dataset

Ø LHC10b, c, d, e, f pass4 (all available data in p-p collisions at 𝑠 = 7 TeV)

Ø Minimum bias trigger in ALICE

• MB}~: V0C || V0A || SPD, where || is logical OR (Total # ~ 418M)

• Note that DG is defined only in MB}~
Ø Double gap using V0+SPD: !V0C & !V0A & SPD (Total # ~ 1.5M)

§ Run quality analysis to evaluate the ratio of the DG triggers, 𝑅7�,�Q = 𝑁7�,�Q/𝑁����.

Distribution of 𝑅7�,�Q

Good	run

𝑅7�,�Q as a function of run numbers and it is stable



Data analysis: event and track selection
§ Event selection procedures to reject pile-up and beam-gas events.

§ Trackcuts: Standard trackcuts + More trackcuts to select only N-track events
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Procedures # of events (%)

𝑀𝐵�� offline 418M (100%)

Vertex cut, 𝑧��� < 10cm 345M (83%)

Pile-up rejection using secondary SPD vertex 336M (80%)

SPD 𝑁�������� vs. 𝑁��������� 336M (80%)

Double-gap 0.98M (0.2%)

Standard trackcuts Value

# of clusters in TPC (LHC10d,e,f) > 70

# of crossed rows in TPC (LHC10b,c) > 70

Ratio crossed rows over findable clusters in 
TPC (LHC10b,c) 

> 0.8

Chi2 per cluster in TPC < 4

Accept kink daughter false

Require TPC, ITS refit true

Cluster requirement in ITS kSPD,kAny

DCA to vertex X,Y 𝑝� dependency 0.0182+0.0350/𝑝�X.QX

Chi2 of TPC constrained global < 36

DCA to vertex Z < 2 cm

DCA to vertex 2D false

Require sigma to vertex false

More trackcuts Value

# of shared cluster in TPC < 3

Distance between 𝑧��� and 𝑧��� < 6 cm

Eta of track -0.9 to 0.9

No unassociated tracklet for selected track
No unassociated SPD fired chip for selected 
track
PID: Bayesian probabilities are used
𝑃� or 𝑃� > 95% are rejected
𝑃� < 60% are rejected



Data analysis: event and track selection
§ Global track in ALICE: −0.9 < 𝜂 < 0.9

§ Another definition of track in ALICE: tracklet

Ø A line between one point in SPD inner layer and another point in SPD outer layer

Ø Eta of tracklet : −2 < 𝜂 < 2

2016. 11. 26. PWG-UD Diffractive Meeting 11

TPC
−0.9 < 𝜂 < 0.9

SPD	outer	layer

SPD	inner	layer

interaction	point

Global	track

tracklet2

Missing	 in	global	tracks
but	detected	in	SPD	as
tracklet

tracklet1

associated	SPD	Fired	chips

1. 𝑁(?@>�+*(9 > 𝑁(?@>�9:	rejected
This	means	we	required	
no	activities	outside	of	TPC	regions	
to	enhance	gap	definitions.
Before,	no	signals	in	

2.8 < 𝜂 < 5.1
−3.7 < 𝜂 < −1.7

Now,	we	can	have	more	gaps	in
−2.0 < 𝜂 < −0.9
+0.9 < 𝜂 < +2.0

additionally.

2.	unassociated	SPD	fired	chips
:	rejected
reduce	noisy	SPD	chips	ensuring	
signals	are	from	tracks

unassociated	SPD	Fired	chips



Data analysis: raw multiplicity distribution
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• No gap (NG) event can be used as comparison because this refers non-diffractive events.
• NG: !DG & !Single gap A-side & !Single gap C-side

• DG shows clear difference with NG events and has very small multiplicities for all events.
• More of even-multiplicity events than odd-multiplicity events (DPE produce only even 

multiplicities)→ DG triggers pick up DPE process as well as background.

X-axis	:	Multiplicity
Y-axis	:	Normalized	entries

Black	=	No	gap
Red	=	V0	double	gap
Blue	=	Even	number	 in	V0	DG
Green	=	Odd	number	 in	V0	DG



Data analysis: raw invariant mass distribution of 𝜋"𝜋#
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• Like-sign contamination is very low ~ 3% of total two-pion events.
• Again, NG is used as comparison and it has 𝐾�Q(500)and 𝜌Q 770 𝐽`a = 1## .
• There are clear signals of 𝑓Q 980 and 𝑓Y(1270) in both V0 and V0+FMD gaps and no difference 

between these two gaps. → V0 gap can be used for further analysis due to large statistics.
• DG contains DPE process with 𝜋"𝜋# final states as well as background.

X-axis	:	Invariant	mass	of	𝜋"𝜋#
Y-axis	:	Normalized	entries

Black	=	No	gap
Red	=	V0	double	gap	(~40K)
Blue	=	V0+FMD	double	gap	(~35K)

𝜌Q(770) appeared in DG which is
not allowed in DPE process
1. photon-Pomeron interaction
2. Feed-down from 3- or 4- body 

decay
3. Pure background

𝐾�Q(500) 𝜌Q(770)

𝑓Q (980)

𝑓Y(1270)



Data analysis: 𝑝� distribution of 𝜋"𝜋#
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• As DPE is related to small momentum transfer in transverse plane, 𝑝� of produced system 
should be very small.

• Mean 𝑝� of DG is smaller than NG and there is no difference between V0 and V0+FMD gaps.
• DG contains DPE process with 𝜋"𝜋# final states as well as background.

X-axis	:	𝑝� of	𝜋"𝜋#
Y-axis	:	Normalized	entries

Black	=	No	gap
Red	=	V0	double	gap	(~40K)
Blue	=	V0+FMD	double	gap	(~35K)



Data analysis: estimation of background
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§ Even though DG selects the DPE process, there is a chance that other processes are triggered 
with DG as background.

Ø 𝑵𝐃𝐆,𝟐𝛑 = 𝑵𝐂𝐃,𝟐𝛑 ∗ 𝝐𝐂𝐃,𝟐𝛑 + 𝑵𝐍𝐂𝐃,𝟐𝛑 ∗ 𝝐𝐍𝐂𝐃,𝟐𝛑, where NCD means non central diffraction.

• NCD = ND+SD+DD+…

§ To estimate amounts and shape of background, we used Pythia6 
because Pythia6 doesn’t have CD process at all.

Ø Same track and event selections as data are applied to Pythia6.

§ The goal is to get a purity of data samples and distinguish signal and background in the data.

§ Purity of data sample

Ø 𝑃 = ¥¦§,¨©∗ª¦§,¨©
¥§«,¨©

= ¥§«,¨©#¥¬¦§,¨©∗ª¬¦§,¨©
¥§«,¨©

= ­���#`®�¯°�±
­���

Ø Analysis of backgrounds from other sources is ongoing using Pythia8, PHOJET and 
STARLIGHT

1. Feed down from high mass central diffraction (Pythia8, PHOJET)

2. 𝜌Q(770) from photon-Pomeron interaction (STARLIGHT)



Data analysis: estimation of background
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Invariant mass and 𝑝� of 𝜋"𝜋# with data (black) and MC (Red). All histograms are normalized with
each 𝑁����

• According to Pythia6, there are large continuum non-resonant background below 1 GeV, and 
𝜌Q(770) from NCD is observed with the DG trigger.
→ Most of 𝜌Q(770) in the data can be from NCD, not photon-Pomeron interaction.
→ This can explain why we observe 𝜌Q(770)(𝐽`a = 1##) in DPE.

• We may use the cut on 𝑝� in the data to distinguish signal and background, however, it is 
impossible to have a such cut.
→ It’s hard to decompose signal and background in the data



Data analysis: estimation of background
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Purity as a function of an invariant mass (left) and 𝑝� (right) of 𝜋"𝜋# system

• Purity of the data sample is about 60~80% at 𝑓Q(980) and 𝑓Y(1270), and almost 0% at 𝜌Q 770 .
• Mean value of purity is around 50%.
• If it is possible to get purities including backgrounds from other sources,

cross section of 𝜋"𝜋# system can be obtained and compared with CMS.
• The higher the 𝑝� is, the larger the purity is.

• There is large amount of contamination of data sample in low 𝑝� regions.
• Note that this is model dependent.

𝜌Q(770)

𝑓Q (980) 𝑓Y(1270)



Partial wave analysis: basic formalism
§ In principle, invariant mass spectrum of 𝜋"𝜋# system is mixed with many meson states.

Ø Partial wave analysis (PWA) allows to decompose particles into different quantum number states.

§ Basic formalism✝

Ø PWA is tool to find out ‘number of events of a given mass bin’ having specific quantum number
• Partial amplitudes: 𝑱𝑴𝝐 , where 𝐽 is spin, 𝜖 is reflectivity, and 𝑀	is magnetic quantum number

e.g. 𝑆Q# ,𝐷Q#,𝐷X#,𝐷X",… (complex number)

• Number of particles in one mass bin = 𝑱𝑴𝝐 𝟐

Ø Likelihood function for finding ‘n’ events of a given bin with a finite acceptance 𝜂 Ω :

• 𝐿 = ¹º»

¹!
𝑒#¹º ∏ ¿(ÀÁ)

∫ ¿ À Ã À ÄÀ
¹
°

Ø By applying extended log-likelihood method, equation is simplified to minimizing function 𝐹.

• 𝐹 = −∑ 𝐥𝐧𝑰 𝜴𝒊𝒊 + ∑ 𝒕𝑳𝑴𝝐𝑳𝑴𝑳𝑴 , where 𝑖 is event number and (L,M) are quantum numbers.

• Angular distribution from the data: 𝑰 𝛀𝐢 = ∑ 𝒕𝑳𝑴Re𝑌ÓÔ(Ω°)ÓÔ

,where 𝑌ÓÔ is a spherical harmonic function and Ω° is solid angle of 𝜋" in GJ frame.

• Efficiency term from MC: 𝜖ÓÔ = U�
¥ÕÖ»

∑ Re𝑌ÓÔ(Ω×)× , for acceptance correction

• 𝒕𝑳𝑴: fit parameters, but can be exchanged to partial wave components, 𝐽Ôª .

• Minimizing 𝐹 using Minuit(MIGRAD) in ROOT

2016. 11. 26. PWG-UD Diffractive Meeting 18

✝Suh-Urk Chung, “Techniques of Amplitude Analysis for Two-pseudoscalar Systems”, Physical Review D56, 7299, 1997



Partial wave analysis: correlation between fit parameters
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• 𝑡ÓÔ have correlations with partial amplitudes and we can obtain 𝐽Ôª doing PWA.

These terms have deep correlation with 
𝑀 = 2 waves.
Our analysis results show these are 
compatible to zero, therefore, we can 
ignore 𝑀 = 2 waves.



Partial wave analysis: GJ’-frame
§ Gottfried-Jackson frame is used as the coordinate system of PWA.

Ø Pomeron mechanism

• 𝑧-axis: 𝑝Ù of incoming Pomeron in the 𝜋"𝜋# rest frame

• 𝑦-axis: 𝑝Ù×𝑝Ü	 in LAB frame

• 𝑥-axis: 𝑝®×𝑝Ù in the 𝜋"𝜋# rest frame

Ø As we can’t detect outgoing protons, we don’t know momentum of Pomerons.
→ Proton mechanism, ignoring Pomeron in this case (GJ’-frame)

• 𝑧-axis: 𝑝Ù of incoming proton in the 𝜋"𝜋# rest frame

2016. 11. 26. PWG-UD Diffractive Meeting 20

GJ’-frame with production plane GJ’-frame with definition of solid angle



0

10

20

30

40

50

60

70

80

90

)2c System(GeV/-/+/Invariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6

+ /
 o

f 
G

J
e

co
s

1<

0.8<

0.6<

0.4<

0.2<

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

90ALICE 2010
=7 TeV pass4spp, 

Partial wave analysis: 𝐼(Ω°) in minimizing function 𝐹

2016. 11. 26. PWG-UD Diffractive Meeting 21

0

10

20

30

40

50

60

70

80

)2c System(GeV/-/+/Invariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6

+ /
 o

f 
//

TYq

1<

0.8<

0.6<

0.4<

0.2<

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80
ALICE 2010

=7 TeV pass4spp, 

0

20

40

60

80

100

+/ of GJecos
1< 0.8< 0.6< 0.4< 0.2< 0 0.2 0.4 0.6 0.8 1

+ /
 o

f 
//

TYq

1<

0.8<

0.6<

0.4<

0.2<

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

ALICE 2010
=7 TeV pass4spp, 

x : Mass of 𝜋"𝜋#
y : cos 𝜃 of 𝜋"

x : cos 𝜃 of 𝜋"
y : 𝜙/𝜋 of 𝜋"

x : Mass of 𝜋"𝜋#
y : 𝜙/𝜋 of 𝜋"
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partial amplitudes according to spherical 
harmonics with acceptance correction 
using PWA.



Partial wave analysis: 𝜖ÓÔ in minimizing function 𝐹
§ MC set: special generator is prepared for partial wave analysis

Ø Generator: DRgen from COMPASS, 𝑝 + 𝑝 → 𝑝 +𝑋 +𝑝 → 𝑝 +𝜋"𝜋#+ 𝑝

• system X is produced from double-Pomeron exchange and decay to only 𝜋"𝜋#

Ø Generated system has 𝑦Ü,^�¹. < 2, however, 𝒚𝑿,𝑮𝒆𝒏. < 𝟏 is applied to impose proper condition of CEP

§ 𝜖ÓÔ roughly means acceptance X efficiency for (L,M) quantum numbers

2016. 11. 26. PWG-UD Diffractive Meeting 22



Partial wave analysis: Results
§ Used wave-set = 𝑆Q#,𝐷Q#,𝐷X#,𝐷X" (spin 0,2)

Ø 𝑀 = 2 wave assumed to be zero based on 𝑡ÓÔ results.

Ø 𝑃-waves are not included to reduce uncertainties (DPE produce only even spin waves).

Ø The reflectivity − and +	don’t interfere each other.

Ø Width of mass bin = 40 MeV/𝑐Y and (0.32,1.6) GeV/𝑐Y are used due to limited statistics

2016. 11. 26. PWG-UD Diffractive Meeting 23

𝑓Q (980)

𝑓Y(1270) 𝑓Y(1270)

𝑓Y(1270) 𝑓Y(1270)

• The 𝑓Q 980 and 𝑓Y(1270) are 
appeared in spin 0 and 2 
respectively as expected. 

• Large continuum background is in S-
wave at low mass regions, and there 
is almost no background in D-waves.

• 𝑓Y(1270) is appeared in all D-waves.



Partial wave analysis: mass dependent fit
§ Intensities are fitted with coherent background and one Breit-Wigner function

2016. 11. 26. PWG-UD Diffractive Meeting 24

𝒂𝟎, 𝒂𝟏,𝒂𝟐, 𝒃𝟏,𝒃𝟐 : fit parameters
𝒎𝟎,𝚪𝟎 : mass and width of resonance (fit parameters)
𝒒 : breakup momentum
𝑩𝒍 : Barrier factor from [1]
𝑹 : empirical interaction radius (~1fm)

phase factor
between background 
and Breit-Wigner

[1] F. Von Hippel and C. Quigg. Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes. Phys. Rev., D5:624–638, 1972.

𝑏𝑘𝑔 𝑚 = õ
ö¨ 𝑒(#÷øõ#÷¨õ

¨) for	S-wave

𝑏𝑘𝑔 𝑚 = 1 for	D-wave
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𝒇𝟎(𝟗𝟖𝟎) Mass (MeV/𝒄𝟐) Width (MeV/𝒄𝟐) 𝝌𝟐/𝑵𝑫𝑭

PDG 980 ± 10 40 to 100

From fit 965 ± 21(𝑠𝑡𝑎𝑡.) 56 ± 42(𝑠𝑡𝑎𝑡. ) 1.4

x : Invariant mass of 𝜋"𝜋#
y : 𝑆Q# Y

The data is well-fitted with
large continuum background and
𝑓Q 980 signal. Two functions are
interfered each other at 𝑓Q(980)
regions.
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x : Invariant mass of 𝜋"𝜋#
y :Σ 𝐷 Y

The data is well-fitted with
small constant background and
𝑓Y 1270 signal. Two functions are
interfered each other.

𝒇𝟐(𝟏𝟐𝟕𝟎) Mass (MeV/𝒄𝟐) Width (MeV/𝒄𝟐) 𝝌𝟐/𝑵𝑫𝑭

PDG 1275.1 ± 1.2 185.1#Y.U"Y."

From fit 1257 ± 16(𝑠𝑡𝑎𝑡. ) 187 ± 37(𝑠𝑡𝑎𝑡.) 0.94



Conclusions
§ Data analysis

Ø Double-Pomeron exchange dominates central production at high energies and generates 
only even multiplicities.

Ø ALICE could measure central productions by utilizing double gap topology.

Ø 𝜋"𝜋# final states are studied with special trackcuts and 
𝑓Q(980) and 𝑓Y(1270)are clearly seen.

Ø Currently, purity is estimated as 50% and cross section will be obtained using various MC.

§ Partial wave analysis has been done to get properties of produced particles.

Ø Spin, mass, and width of produced particles are obtained.

Ø Systematic uncertainties and cross section of 𝑓Q(980) and 𝑓Y(1270)will be obtained.
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𝒇𝟐(𝟏𝟐𝟕𝟎) Mass (MeV/𝒄𝟐) Width (MeV/𝒄𝟐) Spin
PDG 1275.1± 1.2 185.1#Y.U"Y." 2

ALICE 1257± 16(𝑠𝑡𝑎𝑡. ) 187± 37(𝑠𝑡𝑎𝑡. ) 2

𝒇𝟎(𝟗𝟖𝟎) Mass (MeV/𝒄𝟐) Width (MeV/𝒄𝟐) Spin
PDG 980± 10 40 to 100 0

ALICE 965± 21(𝑠𝑡𝑎𝑡. ) 56 ± 42(𝑠𝑡𝑎𝑡.) 0



Backup
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𝜋"𝜋# invariant mass distribution from other experiments
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STAR results, Acta Phys.Polon. B47 (2016) 53-58 CDF results, arXiv:1502.01391v3 

𝑓Q(𝟗𝟖𝟎)

𝑓Y(𝟏𝟐𝟕𝟎)
𝑓Q(𝟗𝟖𝟎)

𝑓Y(𝟏𝟐𝟕𝟎)



Silicon Pixel Detector (SPD)
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1200	chips
400	at	inner	and	800	at	outer

THE	ALICE	SILICON	PIXEL	DETECTOR	(SPD),	A.	KLUGE



Vertex distributions
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SPD clusters versus SPD tracklets cut
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Rejected events from trackcuts
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Bayesian probabilities
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mean 𝑝� versus mass, 𝑝� versus mass 
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Estimation of background with mother particle
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Differential cross section of DRgen (MC)
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𝑏 : 8𝐺𝑒𝑉#Y
𝑡X, 𝑡Y : Transfer momenta of Pomerons
𝑥X,𝑥Y : Feynmann variables of outgoing protons
𝛼` : Pomeron trajectory, 𝛼` = 1.08 + 0.25𝑡
𝑞X,𝑞Y : Transverse momenta of outgoing protons



Angular distribution of MC
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PWA based on 𝑡ÓÔ

2016. 11. 26. PWG-UD Diffractive Meeting 39



Barrier factor
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Feynmann diagrams of DPE
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