

Partial wave analysis of the $\pi^+\pi^-$ system produced in double gap p-p collisions at $\sqrt{s} = 7$ TeV

<u>Taesoo Kim*</u>, Ju Hwan Kang Yonsei University 2016. 11. 26. HIM Meeting, IBS

- Motivation of central diffraction
- Data analysis
- Partial wave analysis of $\pi^+\pi^-$ system
- Conclusion

Motivation: inelastic cross section

- Total cross section in p-p collisions
 - > $\sigma_{tot} = \sigma_{el} + \sigma_{INEL}$, and σ_{INEL} increases faster than σ_{el} at high energies due to contributions from diffractive processes. Therefore, the diffraction can't be ignored at high energies.

 $> \sigma_{\text{INEL}} = \sigma_{\text{non-diff.(ND)}} + \sigma_{\text{single-diff.(SD)}} + \sigma_{\text{double-diff.(DD)}} + \sigma_{\text{central-diff.(CD)}} + \cdots$

\sqrt{s} (TeV)	$\sigma_{ m SD}/\sigma_{ m INEL}$	$\sigma_{ m DD}/\sigma_{ m INEL}$	SD+DD contribute
0.9	0.21 ± 0.03	0.11 ± 0.03	30% of INEL
2.76	$0.20\substack{+0.07\\-0.08}$	0.12 ± 0.05	arXiv:1208.4968v1
7	$0.20\substack{+0.04\\-0.07}$	$0.12\substack{+0.05 \\ -0.04}$	(ALICE)

Motivation: diffractive processes

- In Regge theory, all diffractive processes can be described by *Pomeron* at high energies.
 - > **Pomeron**: colour singlet object with the quantum number of the vacuum
 - While SD and DD are explained by single-Pomeron exchange, CD is dominated by double-Pomeron exchange (DPE).
- The diffraction is defined when the momentum transfer of incoming proton is much less than the centre-of-mass energy.
 - > Single Diffraction (SD): one proton is intact and one proton dissociates, $p_1 + p_2 \rightarrow p_1' + X_2$
 - > Double Diffraction (DD): two protons dissociate, $p_1 + p_2 \rightarrow X_1 + X_2$
 - > Central Diffraction (CD): two protons are intact, $p_1 + p_2 \rightarrow p_1' + X + p_2'$

Feynmann diagrams of single (left), double (middle), and central (right) diffraction with Pomeron exchange, arXiv:1005.3894

HIM Meeting

Motivation: central diffraction (central production)

- Central diffraction, $p_1 + p_2 \rightarrow p_1' + X + p_2'$
 - produce interesting system X such as glueballs and hybrid due to glue-rich nature of Pomeron.
 - > restrict the quantum numbers of the produced system $X (I^G J^{PC} = 0^+ \text{even}^{++})$, so final states can be $\pi^+\pi^-, K^+K^-, \pi^+\pi^-\pi^+\pi^-$, etc. The $\pi^+\pi^-$ had been analyzed in other experiments, $f_0(980)(J^{PC} = 0^{++})$ and $f_2(1270)(J^{PC} = 2^{++})$ are observed in the $\pi^+\pi^-$ final states.

• The goal is to investigate $\pi^+\pi^-$ final states in CD and provide properties of produced particles.

Data analysis: double gap topology

- Even though A Large Ion Collider Experiment (ALICE) is dedicated experiment for heavy-ion collisions, ALICE is suitable for investigating central diffraction in p-p collisions.
- Double gap topology
 - > $p_1 + p_2 \rightarrow p_1' + X + p_2'$ can be identified if all protons are measured.
 - > ALICE can't detect outgoing protons (p_1', p_2') due to absent of very forward detectors.
 - > Alternatively, we can use **double gap (DG) topology** to identify CD.
 - While intact protons have large pseudorapidity (η), the produced system *X* has very small η because of small momentum transfers.
 - Thus, we have two gaps between intact protons and the produced system *X*.

Central diffraction with DPE and rapidity distribution of produced particles, arXiv:1005.3894

HIM Meeting

Data analysis: ALICE detectors

- Double gap topology in ALICE as a trigger
 - This trigger was not implemented as online in Run1. Therefore, we use offline information to reconstruct the DG trigger.
 - > <u>Requirement: some signals in central regions without any activities in forward gaps.</u>
 - ALICE has V0, FMD at forward regions to detect gaps and SPD to measure centrally produced signal as trigger detectors.
 - DG in ALICE: !V0C & !V0A & SPD, where & (!) is logical AND (NOT)
 - No signals on V0A,C side and at least one fired chip in SPD
 - Sub-sample: IFMDC & IV0C & IFMDA & IV0A & SPD (enhanced gap definition)


```
TPC: -0.9 < \eta < 0.9
SPD outer layer: -2 < \eta < 2
SPD inner layer: -1.4 < \eta < 1.4
VOA: 2.8 < \eta < 5.1
VOC: -3.7 < \eta < -1.7
FMDA: 1.7 < \eta < 5.1
FMDC: -3.4 < \eta < -1.7
```

Data analysis: ALICE detectors

- Trigger: V0, Forward Multiplicity Detector (FMD), Silicon Pixel Detector (SPD)
- Tracking: Inner Tracking System (ITS) + Time Projection Chamber (TPC)

Data analysis: dataset

Dataset

> LHC10b, c, d, e, f pass4 (all available data in p-p collisions at $\sqrt{s} = 7$ TeV)

Minimum bias trigger in ALICE

- MB_{OR}: V0C || V0A || SPD, where || is logical OR (Total # ~ 418M)
- Note that DG is defined only in MB_{OR}
- Double gap using V0+SPD: !V0C & !V0A & SPD (Total # ~ 1.5M)

Data analysis: event and track selection

Event selection procedures to reject pile-up and beam-gas events.

Procedures	# of events (%)
MB _{OR} offline	418M (100%)
Vertex cut, $ z_{vtx} < 10$ cm	345M (83%)
Pile-up rejection using secondary SPD vertex	336M (80%)
SPD N _{clust ers} vs. N _{tracklets}	336M (80%)
Double-gap	0.98M(0.2%)

Trackcuts: Standard trackcuts + More trackcuts to select only N-track events

Standard trackcuts	Value
# of clusters in TPC (LHC10d,e,f)	> 70
# of crossed rows in TPC (LHC10b,c)	> 70
Ratio crossed rows over findable clusters in TPC (LHC10b,c)	> 0.8
Chi2 per cluster in TPC	< 4
Accept kink daughter	false
Require TPC, ITS refit	true
Cluster requirement in ITS	kSPD,kAny
DCA to vertex X,Y p_T dependency	$0.0182 + 0.0350/p_T^{1.01}$
Chi2 of TPC constrained global	< 36
DCA to vertex Z	< 2 cm
DCA to vertex 2D	false
Require sigma to vertex	false

More trackcuts	Value			
# of shared cluster in TPC	< 3			
Distance between z_{trk} and z_{vtx}	< 6 cm			
Eta of track	-0.9 to 0.9			
No unassociated tracklet for selected track				
No unassociated SPD fired chip for selected track				
PID: Bayesian probabilities are used P_p or $P_K > 95\%$ are rejected $P_{\pi} < 60\%$ are rejected				

Data analysis: event and track selection

- Global track in ALICE: $-0.9 < \eta < 0.9$
- Another definition of track in ALICE: tracklet

> A line between one point in SPD inner layer and another point in SPD outer layer

> Eta of tracklet : $-2 < \eta < 2$

1. $N_{\text{tracklets}} > N_{\text{tracks}}$: rejected This means we required no activities outside of TPC regions to enhance gap definitions. Before, no signals in $2.8 < \eta < 5.1$ $-3.7 < \eta < -1.7$ Now, we can have more gaps in $-2.0 < \eta < -0.9$ $+0.9 < \eta < +2.0$ additionally.

2. unassociated SPD fired chips
: rejected
reduce noisy SPD chips ensuring
signals are from tracks

Data analysis: raw multiplicity distribution

- No gap (NG) event can be used as comparison because this refers non-diffractive events.
 - NG: IDG & ISingle gap A-side & ISingle gap C-side
- DG shows clear difference with NG events and has very small multiplicities for all events.
- More of even-multiplicity events than odd-multiplicity events (DPE produce only even multiplicities) → DG triggers pick up DPE process as well as background.

HIM Meeting

Data analysis: raw invariant mass distribution of $\pi^+\pi^-$

- Like-sign contamination is very low ~ 3% of total two-pion events.
- Again, NG is used as comparison and it has $K_s^0(500)$ and $\rho^0(770)(J^{PC} = 1^{--})$.
- There are clear signals of $f_0(980)$ and $f_2(1270)$ in both V0 and V0+FMD gaps and no difference between these two gaps. \rightarrow V0 gap can be used for further analysis due to large statistics.
- DG contains DPE process with $\pi^+\pi^-$ final states as well as background.

Data analysis: $p_{\rm T}$ distribution of $\pi^+\pi^-$

- As DPE is related to small momentum transfer in transverse plane, $p_{\rm T}$ of produced system should be very small.
- Mean $p_{\rm T}$ of DG is smaller than NG and there is no difference between V0 and V0+FMD gaps.
 - DG contains DPE process with $\pi^+\pi^-$ final states as well as background.

Data analysis: estimation of background

- Even though DG selects the DPE process, there is a chance that other processes are triggered with DG as background.
 - $> N_{\text{DG},2\pi} = N_{\text{CD},2\pi} * \epsilon_{\text{CD},2\pi} + N_{\text{NCD},2\pi} * \epsilon_{\text{NCD},2\pi}$, where NCD means non central diffraction.
 - NCD = ND+SD+DD+...
- To estimate amounts and shape of background, we used Pythia6 because Pythia6 doesn't have CD process at all.
 - Same track and event selections as data are applied to Pythia6.
- The goal is to get a purity of data samples and distinguish signal and background in the data.
- Purity of data sample

$$> P = \frac{N_{CD,2\pi} + \epsilon_{CD,2\pi}}{N_{DG,2\pi}} = \frac{N_{DG,2\pi} - N_{NCD,2\pi} + \epsilon_{NCD,2\pi}}{N_{DG,2\pi}} = \frac{Data - Pythia6}{Data}$$

- Analysis of backgrounds from other sources is ongoing using Pythia8, PHOJET and STARLIGHT
 - 1. Feed down from high mass central diffraction (Pythia8, PHOJET)
 - 2. $\rho^{0}(770)$ from photon-Pomeron interaction (STARLIGHT)

Data analysis: estimation of background

each N_{MBor}

• According to Pythia6, there are large continuum non-resonant background below 1 GeV, and $\rho^0(770)$ from NCD is observed with the DG trigger.

→ Most of $\rho^0(770)$ in the data can be from NCD, not photon-Pomeron interaction.

 \rightarrow This can explain why we observe $\rho^0(770)(J^{PC} = 1^{--})$ in DPE.

- We may use the cut on p_T in the data to distinguish signal and background, however, it is
 impossible to have a such cut.
 - \rightarrow It's hard to decompose signal and background in the data

HIM Meeting

Data analysis: estimation of background

Purity as a function of an invariant mass (left) and $p_{\rm T}$ (right) of $\pi^+\pi^-$ system

- Purity of the data sample is about 60~80% at $f_0(980)$ and $f_2(1270)$, and almost 0% at $\rho^0(770)$.
 - Mean value of purity is around 50%.
 - If it is possible to get purities including backgrounds from other sources, cross section of $\pi^+\pi^-$ system can be obtained and compared with CMS.
- The higher the $p_{\rm T}$ is, the larger the purity is.
 - There is large amount of contamination of data sample in low $p_{\rm T}$ regions.
 - Note that this is model dependent.

HIM Meeting

Partial wave analysis: basic formalism

- In principle, invariant mass spectrum of $\pi^+\pi^-$ system is mixed with many meson states.
 - > Partial wave analysis (PWA) allows to decompose particles into different quantum number states.
- Basic formalism⁺
 - > PWA is tool to find out **<u>'number of events of a given mass bin' having specific quantum number</u>**
 - Partial amplitudes: J_M^{ϵ} , where *J* is spin, ϵ is reflectivity, and *M* is magnetic quantum number e.g. S_0^- , D_0^- , D_1^- , D_1^+ ,... (complex number)
 - Number of particles in one mass bin = $|I_M^{\epsilon}|^2$
 - > Likelihood function for finding '**n**' events of a given bin with a finite acceptance $\eta(\Omega)$:

•
$$L = \left[\frac{\bar{n}^n}{n!}e^{-\bar{n}}\right]\prod_i^n \left[\frac{I(\Omega_i)}{\int I(\Omega)\eta(\Omega)d\Omega}\right]$$

- \triangleright By applying extended log-likelihood method, equation is simplified to minimizing function *F*.
 - $F = -\sum_{i} \ln I(\Omega_{i}) + \sum_{LM} t_{LM} \epsilon_{LM}$, where *i* is event number and (L,M) are quantum numbers.
 - Angular distribution from the data: $I(\Omega_i) = \sum_{LM} t_{LM} \operatorname{Re} Y_L^M(\Omega_i)$
 - ,where Y_L^M is a spherical harmonic function and Ω_i is solid angle of π^+ in GJ frame.
 - Efficiency term from MC: $\epsilon_{LM} = \frac{4\pi}{N_{gen}} \sum_{j} \operatorname{Re}Y_{L}^{M}(\Omega_{j})$, for acceptance correction
 - t_{LM} : fit parameters, but can be exchanged to partial wave components, J_M^{ϵ} .
 - Minimizing F using Minuit(MIGRAD) in ROOT

⁺ Suh-Urk Chung, "Techniques of Amplitude Analysis for Two-pseudoscalar Systems", Physical Review D56, 7299, 1997

Partial wave analysis: correlation between fit parameters

 t_{LM} have correlations with partial amplitudes and we can obtain J_M^{ϵ} doing PWA.

$$\begin{split} &\sqrt{4\pi_{100}} = |s_0^-|^2 + |P_0^-|^2 + |P_1^+|^2 + |D_0^-|^2 + |D_1^+|^2 + |D_2^-|^2 + |D_2^+|^2 + |D_2^+|^2 \\ &\sqrt{4\pi_{110}} = \frac{2}{5}(\sqrt{15}D_1^+P_1^+ + \sqrt{15}D_1^-P_1^- + 5P_0^-S_0^- + 2\sqrt{5}P_0^-D_0^-) \\ &\sqrt{4\pi_{111}} = \frac{\sqrt{2}}{5}(\sqrt{15}D_2^+P_1^+ + \sqrt{15}D_2^-P_1^- + \sqrt{15}D_1^-P_0^- + 5P_1^-S_0^-) \\ &\sqrt{4\pi_{120}} = \frac{1}{35}(\sqrt{5}(10|D_0^-|^2 + 5|D_1^-|^2 + 5|D_1^+|^2 - 10|D_2^-|^2 - 10|D_2^+|^2 - 1|P_1^+|^2 - 7|P_1^+|^2 - 7|P_1^-|^2) \\ &+ 70D_0^-S_0^-) \\ &\sqrt{4\pi_{121}} = \frac{\sqrt{2}}{5}(\sqrt{15}D_2^+D_1^+ + 35S_0^-D_1^- + 5D_1^-(\sqrt{15}D_2^- + 7D_0^-) + 7\sqrt{15}P_0^-P_1^-) \\ &\sqrt{4\pi_{121}} = \frac{\sqrt{2}}{5}(\sqrt{15}D_2^+D_1^+ + 35S_0^-D_1^- + 5D_1^-(\sqrt{15}D_2^- + 7D_0^-) + 7\sqrt{15}P_0^-P_1^-) \\ &\sqrt{4\pi_{121}} = \frac{\sqrt{2}}{35}(\sqrt{15}D_0^-P_0^- - D_1^+P_0^+ - D_1^-P_1^-) \\ &\sqrt{4\pi_{130}} = \frac{6}{\sqrt{35}}(\sqrt{3}D_0^-P_0^- - D_1^+P_0^+ - D_1^-P_1^-) \\ &\sqrt{4\pi_{131}} = \sqrt{\frac{3}{35}}(D_1^-P_0^- + 6\sqrt{3}D_0^-P_1^- - D_2^+P_1^+ - D_2^-P_1^-) \\ &\sqrt{4\pi_{132}} = \sqrt{\frac{6}{7}}(D_1^-P_1^- - D_1^+P_1^+ + P_0^-D_2^-) \\ &\sqrt{4\pi_{133}} = \frac{3}{\sqrt{7}}(D_2^-P_1^- - D_1^+P_1^+ + P_0^-D_2^-) \\ &\sqrt{4\pi_{143}} = \frac{1}{7}(6|D_0^-|^2 - 4|D_1^-|^2 - 4|D_1^+|^2 + |D_2^-|^2 + |D_2^+|^2) \\ &\sqrt{4\pi_{144}} = \frac{\sqrt{5}}{7}(D_1^+D_2^+ - D_1^-D_2^- - 2\sqrt{3}D_0^-D_1^-) \\ &\sqrt{4\pi_{144}} = \sqrt{\frac{5}{7}}(D_1^+D_2^- - D_1^+D_2^+) \\ &\sqrt{4\pi_{144}} = \sqrt{\frac{5}{7}}(D_1^-D_2^- - D_1^+D_2^+) \\ &\sqrt{4$$

٠

Partial wave analysis: GJ'-frame

- Gottfried-Jackson frame is used as the coordinate system of PWA.
 - Pomeron mechanism
 - *z*-axis: $\overrightarrow{p_z}$ of incoming Pomeron in the $\pi^+\pi^-$ rest frame
 - *y*-axis: $\overrightarrow{p_z} \times \overrightarrow{p_X}$ in LAB frame
 - x-axis: $\overrightarrow{p_y} \times \overrightarrow{p_z}$ in the $\pi^+\pi^-$ rest frame
 - > As we can't detect outgoing protons, we don't know momentum of Pomerons.
 - \rightarrow Proton mechanism, ignoring Pomeron in this case (GJ'-frame)
 - *z*-axis: $\overrightarrow{p_z}$ of incoming proton in the $\pi^+\pi^-$ rest frame

Partial wave analysis: $I(\Omega_i)$ in minimizing function F

Raw angular distributions in the data. These are decomposed to different partial amplitudes according to spherical harmonics with acceptance correction using PWA.

Partial wave analysis: ϵ_{LM} in minimizing function F

- MC set: special generator is prepared for partial wave analysis
 - ► Generator: DRgen from COMPASS, $p + p \rightarrow p + X + p \rightarrow p + \pi^+\pi^- + p$
 - system X is produced from double-Pomeron exchange and decay to only $\pi^+\pi^-$
 - > Generated system has $|y_{X,Gen}| < 2$, however, $|y_{X,Gen}| < 1$ is applied to impose proper condition of CEP
- ϵ_{LM} roughly means acceptance X efficiency for (L,M) quantum numbers

PWG-UD Diffractive Meeting

Partial wave analysis: Results

- Used wave-set = S_0^- , D_0^- , D_1^- , D_1^+ (spin 0,2)
 - > M = 2 wave assumed to be zero based on t_{LM} results.
 - P-waves are not included to reduce uncertainties (DPE produce only even spin waves).
 - The reflectivity and + don't interfere each other.
 - > Width of mass bin = 40 MeV/ c^2 and (0.32,1.6) GeV/ c^2 are used due to limited statistics

Partial wave analysis: mass dependent fit

Intensities are fitted with coherent background and one Breit-Wigner function

$$F_{\text{fit}} = |(a_0 \cdot e^{ia_1}) \cdot bkg(m) + a_2BW(m)|^2$$

phase factor between background and Breit-Wigner

$$bkg(m) = \sqrt{\frac{q}{m^2}}e^{(-b_1q-b_2q^2)}$$
 for S-wave
 $bkg(m) = 1$ for D-wave

$$BW(m) = \frac{m\Gamma(m)}{m^2 - m_0^2 - im_0\Gamma(m)}, \ \Gamma(m) = \Gamma_0 \frac{q}{m} \frac{B_l^2(q^2R^2)}{B_l^2(q_0^2R^2)}$$

 a_0, a_1, a_2, b_1, b_2 : fit parameters m_0, Γ_0 : mass and width of resonance (fit parameters) q: breakup momentum B_l : Barrier factor from [1] R: empirical interaction radius (~1fm)

[1] F. Von Hippel and C. Quigg. Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes. Phys. Rev., D5:624-638, 1972.

Partial wave analysis: mass dependent fit of $|S_0^-|^2$

Partial wave analysis: mass dependent fit of $\Sigma |D|^2$

Conclusions

- Data analysis
 - Double-Pomeron exchange dominates central production at high energies and generates only even multiplicities.
 - > ALICE could measure central productions by utilizing double gap topology.
 - > $\pi^+\pi^-$ final states are studied with special trackcuts and $f_0(980)$ and $f_2(1270)$ are clearly seen.
 - Currently, purity is estimated as 50% and cross section will be obtained using various MC.
- Partial wave analysis has been done to get properties of produced particles.
 - Spin, mass, and width of produced particles are obtained.

<i>f</i> ₀ (980)	Mass (MeV/c²)	Width (MeV/c ²)	Spin
PDG	980 ± 10	40 to 100	0
ALICE	$965 \pm 21(stat.)$	$56 \pm 42(stat.)$	0
<i>f</i> ₂ (1270)	Mass (MeV/c²)	Width (MeV/c ²)	Spin
<i>f</i> ₂ (1270) PDG	Mass (MeV/c ²) 1275.1±1.2	Width (MeV/c ²) 185.1 ^{+2.9} -2.4	Spin 2

> Systematic uncertainties and cross section of $f_0(980)$ and $f_2(1270)$ will be obtained.

Backup

$\pi^+\pi^-$ invariant mass distribution from other experiments

Silicon Pixel Detector (SPD)

1200 chips 400 at inner and 800 at outer

THE ALICE SILICON PIXEL DETECTOR (SPD), A. KLUGE

HIM Meeting

Vertex distributions

SPD clusters versus SPD tracklets cut

Bayesian probabilities

mean $p_{\rm T}$ versus mass, $p_{\rm T}$ versus mass

Estimation of background with mother particle

Differential cross section of DRgen (MC)

$$d\sigma_{p_1p_2 \to p_1Xp_2} = e^{bt_1}(1-x_1)^{1-2\alpha_{\mathbb{P}}(t_1)}e^{bt_2}(1-x_2)^{1-2\alpha_{\mathbb{P}}(t_2)}\sigma_{\mathbb{PP}\to X}dx_1d^2q_1dx_2d^2q_2$$

 $b: 8GeV^{-2}$

 t_1, t_2 : Transfer momenta of Pomerons x_1, x_2 : Feynmann variables of outgoing protons α_P : Pomeron trajectory, $\alpha_P = 1.08 + 0.25t$ q_1, q_2 : Transverse momenta of outgoing protons

Angular distribution of MC

PWA based on t_{LM}

Fig. 3.10: Barrier factor B_l as a function of $z = (q/q_R)^2$ with l = 0, 1, 2.

PWG-UD Diffractive Meeting

Feynmann diagrams of DPE

(a) Continuum

(b) Resonances

Fig. 1.2: Feynmann diagram of the central diffraction producing dipion system. Both protons are intact only exchanging small momentum transfer $t_1 = (p_a - p_1)^2$, $t_2 = (p_b - p_2)^2$ with Pomeron (P) at high energies. On the left is continuum production of dipion pairs and on the right is resonance production i.e $f_2(1270)$.