

Resonance measurement with ALICE at the LHC

Jihye Song for the ALICE collaboration Pusan National University, Korea

HIM Oct. 22. 2016

Outline

- Motivation
- The ALICE detector
- Resonance reconstruction
 - signal extraction
 - *p*⊤-spectra
- Mean transverse momentum studies
- Integrated particle yield ratios
 - excited hyperons to ground-state hyperons
 - strangeness production to $\pi\,vs.$ multiplicity
- Summary

Resonances in ALICE

- Excited state of ground state particles with same quark content and higher mass
- Short lifetime on the order few fm/c ($\tau_{resonance} \sim \tau_{fireball}$)

particle	Mass (MeV/c²)	Width (MeV/c ²)	ст(fm)	Decay channel	quark contents	Branching ratio (%)
ρ(770) ⁰	770	150	1.3	ππ	(uū+dā)/√2	100
K*(892) ⁰	896	47.4	4.2	πK	ds	66.7
Σ*(1385)+	1383	39.4	5.5	Λπ	uus	87
Σ*(1385)-	1387	36.0	5.0	Λπ	dds	87
Ξ*(1530) ⁰	1532	9.1	21.7	πΞ	USS	66.7
Ф(1020)	1019	4.27	46.2	KK	SS	48.9

Resonance measured with ALICE detector in **pp** (0.9, 2.76, 7, 13 TeV), **p-Pb** (5.02 TeV) and **Pb-Pb** (2.76, 5.02 TeV) collisions

Motivation

- Properties of the **hadronic phase** - good tool to probe the interplay of particle re-scattering and regeneration due to **short lifetime**
- Particle production mechanisms
- comparison of resonance with particles that differ by mass, baryon number, strangeness content

Resonance Regeneration Re-scattering decay

Regeneration: pseudo-elastic scattering of decay products

Re-scattering: resonance decay products undergo elastic scattering or pseudo-elastic scattering through a different resonance

→ Not reconstructed through invariant mass

- Strange resonances
 - complement strangeness enhancement
- + $\frac{p-Pb}{collisions}$
- helps to disentangle cold nuclear matter effects from genuine hot medium effects
- Contribute to the study of the system size dependence of re-scattering

- Reference for 'larger' systems
- Help tuning QCD-inspired event generators

The ALICE detector

The ALICE detector

Particle identification

Topological reconstruction of weak decays

- V-shaped topology for $K^{0}{}_{s}$ and Λ
- cascade topology for Ξ and Ω

Time Projection Chamber (TPC)

- tracking in $|\eta| < 0.9$
- Particle Identification via dE/dx in gas

Time-Of-Flight (TOF)

- PID via time-of-flight measurement

Reconstruction: $\rho(770)^{0}$

- Analysis in pp and Pb-Pb collisions at 2.76 TeV
- Subtract like-charge combinatorial background
- Fit with residua background + cocktail. (K⁰s, K*0, ω, f₀, f₂)

ALI-PREL-107636

Reconstruction: $K^*(892)^0$ and $\Phi(1020)$

- Analysed in - pp at 0.9, 7 (vs. multiplicity), 13 TeV
 - p–Pb at 5.02 TeV
 - Pb–Pb at 2.76, 5.02 TeV
 - Subtract mixed-event or like-charge combinatorial backgrounds
- Polynomial residual background
 - Peak : Breit-Wigner (K*0) or Voigtian (\$\vert\$)

Reconstruction: $K^*(892)^0$ and $\Phi(1020)$

- Measurement performed in different VOM centrality (VOA multiplicity in p-Pb case) bins
- Spectra shape harder in central collision w.r.t. peripheral collisions

Reconstruction $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$

- Invariant mass analysis
- combinatorial
 background using
 event mixing technique
- Breit-Wigner(Σ*±) and Voigtian(Ξ*0) fit functions for signal extraction
- Polynomial fit for residual background

Reconstruction $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$

- Measurement performed in different VOA multiplicity bins
- Lévy-Tsallis function is used to extrapolate dN/dy at low p_T and obtain <p_T percentages of yield in the extrapolated low p_T (36-47% for Σ*± 20-29% for Ξ*⁰)

Mean transverse momentum

peripheral Pb-Pb (similar to pp)

- Pb-Pb collisions
- **central**: K^{*0} , p and ϕ follow mass ordering
- **peripheral**: we observe a splitting of $\langle p_T \rangle$ for proton and ϕ
- **peripheral** \rightarrow **central**: the $\langle p_T \rangle$ of p exhibits a larger increase than other particles
- p-Pb collisions
- increase from lowest to highest multiplicity event class
- $\langle p_{\rm T} \rangle_{\rm p} < \langle p_{\rm T} \rangle_{\rm A} < \langle p_{\rm T} \rangle_{\rm K^{*}0} < \langle p_{\rm T} \rangle_{\phi}$
- **pp** collisions
 - agreement with Pb-Pb (p-Pb) peripheral collisions

peripheral Pb-Pb (similar to pp)

- Pb-Pb collisions
 - **central**: K^{*0} , p and ϕ follow mass ordering
 - **peripheral**: we observe a splitting of $\langle p_T \rangle$ for proton and ϕ
- **peripheral** \rightarrow **central**: the $\langle p_T \rangle$ of p exhibits a larger increase than other particles
- p-Pb collisions
- increase from lowest to highest multiplicity event class
- $\langle p_{\rm T} \rangle_{\rm p} < \langle p_{\rm T} \rangle_{\rm A} < \langle p_{\rm T} \rangle_{\rm K^{*}0} < \langle p_{\rm T} \rangle_{\phi}$
- **pp** collisions
 - agreement with Pb-Pb (p-Pb) peripheral collisions

pp in multiplicity dependent analysis shows same results with p-Pb

$< p_T > v_S < dN_{ch}/d\eta > : hyperons$

- <p_T> of Σ*± & Ξ*⁰ are compared with those for the other hyperons [1],[2]
- Increasing trend from low to high multiplicities for all hyperons
- In all multiplicity classes,
 <p_T> follows mass
 ordering

15

<*p*_T> : system size dependence

- Central Pb-Pb: K^{*0}, p, Φ have similar $< p_T >$
 - consistent with hydrodynamics
- Small systems (p-Pb and pp)

 $< p_T >$ values rise faster with multiplicity than Pb-Pb, reach similar values at high multiplicity as central Pb-Pb

 $< p_T > vs Mass$

- Mass dependence of <p⊤> of identified particles
 - 0-20% VOA multiplicity class in p-Pb (D⁰ & J/Ψ is measured in 0-100% with different rapidity range in p-Pb)
 - MB in pp collisions

- Mass ordering : $\langle p_T \rangle_{\Lambda} < \langle p_T \rangle_{\Xi^-} \simeq \langle p_T \rangle_{\Sigma^{\star^{\pm}}} < \langle p_T \rangle_{\Xi^{\star^0}} < \langle p_T \rangle_{\Omega^-}$
- Trend with mass is similar in **pp** and central **p-Pb**

Particle ratios

- Integrated particle ratios of excited to ground-state hadron with same strangeness content are shown as function of <dN_{ch}/dη>
 - ρ⁰/π: suppression in central Pb-Pb, consistent with hypothesis that rescattering is dominant over regeneration

K*0/K⁻

- progressively larger suppression when going from pp to p-Pb and Pb-Pb
 more re-scattering in larger collision system
- •/K-: no significant trend across systems

0.12

0.1

0.08

0.06

0.04

0.02

 $\mathbf{x}^{0.5}$

Ratio to I

0.3

0.2

0.1

0

2

ALI-PREL-107720

EPOS3, PRC93 (2016) 1, 014911

EPOS3

6

Uncertainties: stat.(bars), syst.(box), uncorr.(shaded box)

sys. (box), uncorr. sys. (shaded box

pp 7 TeV (INEL) ■ pp 7 TeV (Prel.) ■ p-Pb 5.02 TeV ■ Pb-Pb 2.76 TeV ■

GC Thermal model (T=156 MeV)

10

 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta_{\mathrm{lab}}\rangle_{|\eta_{\mathrm{lab}}|<0.5}^{1/3}$

12

8

10

 $\left(\mathrm{d}N_{\mathrm{ch}}\!/\mathrm{d}\eta
ight)^{1/3}$

K^{*0}/K ϕ/K

EPOS3 without UrQMD

ALICE Preliminary

Particle yield ratios (Baryons)

- Integrated particle ratios of excited to ground-state hyperons with same strangeness content are shown as function of <dN_{ch}/dη>
- Ratios are observed to be rather **independent** of the $<dN_{ch}/d\eta>$
- Results are compared with model predictions

 Σ*±/Λ : consistent with the values predicted by PYTHIA8
 DPMJET prediction is lower than experimental data
 Ξ*⁰/Ξ: higher than PYTHIA8 and DPMJET but lower than the thermal models

Strangeness production in **pp**, **p-Pb** and **Pb-Pb**

- Strangeness enhancement - one of the first proposed **QGP** signatures
- Clear increase of strangeness production • from **pp** to **Pb-Pb**
- **p-Pb** results consistent with **pp** at low ulletmultiplicities and with central **Pb-Pb** at high multiplicities

Strangeness production in pp and p-Pb

Comparison with **Σ(1385)**[±] and **Ξ(1530)**⁰ Resonance

- Same strangeness contents
- Relative strangeness production increase with the multiplicity

$\Sigma^{\star\pm}$

similar mass with Ξ(1320)[∓]
Σ*/π shows an increase compatible with Λ/π

Ξ*0

- intermediate in mass between $\Xi(1320)^{\mp}$ and $\Omega(1680)^{\mp}$ - Ξ^{*0}/π shows gradually increasing patterns

enhancement of hyperons is due to their strangeness content ! (not a mass effect)

Strangeness production in pp(multiplicity), p-Pb and Pb-Pb

- Increase of (multi)strange production to π with **multiplicity in pp**
- **MC models** as DIPSY (colour ropes) and EPOS LHC exhibit a trend wth multiplicity but may still need tuning

Strangeness production vs. multiplicity

In pp collisions, **strange to non-strange integrated particle** ratios increasing the event multiplicity show

- Significant enhancement of strange and multi-strange particle production
- Follow the same trend observed in p-Pb collisions despite differences in initial state
- Particle ratios reach value similar to those observed in central Pb-Pb collisions
- MC predictions are not able to describe satisfactorily this behaviour

Strangeness production vs. multiplicity

- No enhancement is observed for particles with same strange quark content
- Increase is not mass related but strangeness related

Normalised values to INEL>0 show

- No increase for p/π •
- Hierarchy of the increase clearly • associated with the strangeness content

K^{*0} production vs. multiplicity

Measurement of strange particle production in **pp**, **p-Pb** and **Pb-Pb** have revealed interesting and similar features across different systems

Small systems

- strangeness enhancement
- relative decrease of K*0

Toward central Pb-Pb - strangeness abundance constant

- relative decrease of K^{*0} in central collisions

26

Summary

Mean transverse momentum

• **Pb-Pb** collisions: K^{*0} , p, ϕ have similar $< p_T >$

 pp,p-Pb collisions: hierarchy of mass ordering; rising faster with multiplicity than Pb-Pb, reach similar values at high multiplicity as central Pb-Pb

Integrated particle ratios

- Central Pb-Pb
 - suppression for ρ/π , K*0/K (re-scattering is dominant effect)
 - ϕ not suppressed
 - strangeness abundance constant
- p-Pb collisions
 - K*0/K, Φ/K ratios follow trend from pp to peripheral Pb-Pb collisions
 - $\Sigma^{*\pm}/\Lambda$ and Ξ^{*0}/Ξ show flat behaviour over the multiplicity range covered by pp and p-Pb collisions (no dominant effect of re-scattering or regeneration)
 - hadron/ π ratios : strangeness enhancement (strangeness content related)

• **pp** collisions

- K*0/K suppressed at high multiplicity

Backup

- INEL: inelastic events(Non+Single+DoubleDiffraction+CD...)
- NSD: ND+DD(to ignore large uncertainty from SD)
- INEL>0 : inelastic events with at least one charged particle in $|\eta| < 1$