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Introduction

ALICE @ CERN

LHC(Large Hadron Collider), SPS, PS

4 major experiments

p+p collisions(as reference), Pb+Pb collisions
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Introduction

Compare with other experiments
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Introduction

ALICE Detectors

Centrality determination by V0( Nch with scintillators in 2.8 < η < 5.1 and
−3.7 < η < −1.7) in Pb–Pb collisions at

√
sNN = 2.76 TeV ≈ 20M events.

Tracking - TPC tracks constrained to the primary vertex and full azimuthal
acceptance ( Unidentified charged particles |η| < 0.8, 0.2 < pT < 5.0 GeV /c)
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Introduction

Evlolution of heavy ion collision

Visualization: madai.us
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And it’s results

First event from ALICE experiments in 2010
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Introduction

Flow analysis

As dN
dφ

is a periodic function(0∼ 2π), it can be expressed with Fourier transformation.

dN

dφ
=

x0

2π
+

1

π

∑
n=1

(An cos nφ+ Bn sin nφ) (1)

If we define vn and ψn such as,

v 2
n = A2

n + B2
n , 0 ≤ ψn ≤

2π

n
(2)

Then we can express An and Bn with vn and ψn. if we put back these into original
equation (1) then

dN

dφ
=

x0

2π
+

1

2π

∑
n=1

(2vn cos n(φ− ψn)) (3)

And, we called vn as flow constant, and ψn as event plane angle.
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Introduction

How to measure flow?
(P. Danielewicz, G. Odyniec, Phys. Lett. 157B, 146 (1985))

Fourier decomposition is used to quantify the anisotropic distribution of produced
particles

dN

dφ
=

v0

2π
+

1

2π

∑
n=1

(2vn cos n(ϕ− ψn))

Flow magnitude vn can be estimated with Event Plane method

vn{EP} = 〈cos n(ϕ− ψn)〉

or by measuring multi-particle correlation(Cumulant method)

vn{2} =
√
〈cos n(ϕ1 − ϕ2)〉
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First results from PHENIX

The second
coefficient of
Fourier’s
harmonics(v2) is
significantly larger
then any other
harmonics

This v2 values are
grow as function of
pT and Centrality

This phenomenon
was unique in
heavy-ion collisions
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Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)
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Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)
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Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)
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Introduction

Note

For better understanding, I’d like to make it sure that

Reaction plane (RP) : Plane which is defined by IP and z-axis(beam direction)

Participant plane (PP) : Effective RP affected by non-perfect isotropic shape

(n-th order) Event plane (EP) : Mathmaticaly defined by above equation
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Introduction

Note

For better understanding, I’d like to make it sure that

Reaction plane (RP) : Plane which is defined by IP and z-axis(beam direction)

Participant plane (PP) : Effective RP affected by non-perfect isotropic shape

(n-th order) Event plane (EP) : Mathmaticaly defined by above equation

Note!

ΨRP 6= ΨPP 6= ΨEP

Also,
dN

dφ
=

v0

2π
+

1

2π

∑
n=1

(2vn cos n(ϕ− ψRP))

is not hold when we consider non-flow effects and non-ideal case
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Introduction

Schematics of Heavy ion collision

Schematic sketch of relativistic heavy ion collisions arXiv:1204.4795

A heavy ion collision can be divided into several stages,

Pre-equilibrium : Immediately after collision

Deconfined state : QGP is formed and starts expanding

Hadron gas : Quarks and gluons are bound into hadrons when temperature is
sufficiently low

Free streaming : Hadrons stop interacting and fly to the detector
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Flow in Heavy-ion collisions
Correlation between ”Flow” and ”System properties”

Weakly coupled → Long distance until next collision
→ easy mixing

Strongly coupled → Short distance until next
collision → mixing take long time

η ∝ lmfp ∝ 1/nσ

The larger the corss-section, the smaller η, large v2

Stronger interaction → Less viscous fluid

Shear viscosity smears out flow differences (it’s a
diffusion)

Shear viscosity reduces non-sphericity

Result : Large v2 means, low η/s

HIM2016 @ Yonsei Univ Flow harmonic correlations May 27, 2016 16 / 38



Introduction

Initial geometry and its fluctuations → Transport properties ( η/s(T ) ) → final-state particles

R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007), “It is argued
that such a low value is indicative of thermodynamic trajectories for
the decaying matter which lie close to the QCD critical end point.”

courtesy of Bjorn Schenke, “String theory (AdS/CFT correspondence) finds η/s is
1/4π a strongly coupled conformal theory→ hints at a lower bound of that order.”
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Introduction

Flow measurements in Heavy-Ion Collisions

The magnitudes of Flow-vector, anisotropic flow harmonics vn, have been measured
in great details (centrality, pT , η, PID)

Large elliptic flow has indicated fluid behavior of matter created at RHIC in early
2000’s ( BNL announces perfect liquid in 2005 press release )
The importance of fluctuations was realized later and analysis of odd flow harmonics
began in 2010 ( since B. Alver, G. Roland, Phys.Rev. C81, 054905 )

The fluctuations of each individual flow harmonic have been investigated in great
details in recent years
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Introduction

Selected flow measurements at LHC in one slide
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Correlation between flow-vectors Correlation between magnitude of different flow harmonics

Correlation between flow-vectors

Flow direction correlations: ψn and ψm correlations
Flow magnitude correlations: vm and vn correlations

Are vn and vm correlated? anti-correlated? or not correlated?
How can we investigate the relationship between vn and vm without contribution of ψm

and ψn
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, which includes not only

event plane angle correlations but also it’s magnitude
(J.Y.Ollitrault et. al., Phys.Lett. B744 (2015) 82-87)
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Correlation between flow-vectors Correlation between magnitude of different flow harmonics

Correlations of vm and vn

A linear correlation coefficient c(vn,vm) was proposed (H. Niemi et al.,Phys. Rev. C 87,
054901 (2013)) to study the correlations between vn and vm

c(vm, vn) = 〈 (vm − 〈vm〉ev )(vn − 〈vn〉ev )

σvnσvm

〉ev

c(v2, v3) is sensitive to initial conditions and insensitive to η/s, c(v2, v4) is sensitive
to both

However, this observable is not easily accessible in flow measurements which are
relying on two- and multi-particle correlations.
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Correlation between flow-vectors Symmetric 2-harmonic 4-particle Cumulants

Symmetric 2-harmonic 4-particle Cumulants

New Observable : Symmetric 2-harmonic 4-particle Cumulants (SC) 1

〈〈cos(mϕ1 +nϕ2−mϕ3 −nϕ4)〉〉c = 〈〈cos(mϕ1 +nϕ2−mϕ3 −nϕ4)〉〉
− 〈〈cos[m(ϕ1−ϕ2)]〉〉 〈〈cos[n(ϕ1−ϕ2)]〉〉

=
〈
v 2
mv

2
n

〉
−
〈
v 2
m

〉〈
v 2
n

〉
By construction not sensitive to

non flow effects
inter-correlations of various symmetry planes

It is non-zero if the event-by-event amplitude fluctuations of vn and vm are
(anti-)correlated.

1Ante Bilandzic et al., Phys. Rev. C 89, 064904 (2014)
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Results

SC(m, n) results

Centrality percentile
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〈〈
cos(mϕ1 +nϕ2−mϕ3 −nϕ4)

〉〉
c

=
〈
v2
mv2

n

〉
−
〈
v2
m

〉 〈
v2
n

〉

The positive values of SC(4,2) and negative SC(3,2) are observed for all centralities.

suggests a correlation between v2 and v4, and an anti-correlations between v2 and v3.

indicates finding v2 > 〈v2〉 in an event enhances the probability of finding v4 > 〈v4〉
and finding v3 < 〈v3〉 in that event.

HIM2016 @ Yonsei Univ Flow harmonic correlations May 27, 2016 23 / 38



Results

SC(m, n) results with HIJING: is Non-flow contribution?

Centrality percentile
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〈〈
cos(mϕ1 +nϕ2−mϕ3 −nϕ4)

〉〉
c

=
〈
v2
mv2

n

〉
−
〈
v2
m

〉 〈
v2
n

〉

It is found that both 〈v 2
mv

2
n 〉 and 〈v 2

m〉〈v 2
n 〉 are non-zero in HIJING, but calculation of

SC(m,n) from HIJING are compatible with zero
suggests SC measurements are nearly insensitive to non-flow correlations

non-zero values of SC measurements cannot be explained by non-flow effects, thus
confirms the existence of (anti-)correlations between vn and vm harmonics.
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Results

SC(m, n) results : Comparisons to hydrodynamics
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〈〈
cos(mϕ1 +nϕ2−mϕ3 −nϕ4)

〉〉
c =

〈
v2
mv2

n

〉
−
〈
v2
m

〉 〈
v2
n

〉
Although hydro describes the vn fairly well, there is not a single centrality bin for
which a given η/s parameterization describes simultaneously SC(4,2) and SC(3,2)

SC measurements provide stronger constrains on the η/s in hydro in combination
with standard vn measurements
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SC and Normalized SC

Working on progress : Symmetric 2-harmonic 4-particle Cumulants

New Observable : Symmetric 2-harmonic 4-particle Cumulants (SC) 2

〈〈cos(mϕ1 +nϕ2−mϕ3 −nϕ4)〉〉c = 〈〈cos(mϕ1 +nϕ2−mϕ3 −nϕ4)〉〉
− 〈〈cos[m(ϕ1−ϕ2)]〉〉 〈〈cos[n(ϕ1−ϕ2)]〉〉

=
〈
v 2
mv

2
n

〉
−
〈
v 2
m

〉〈
v 2
n

〉

It is non-zero if the event-by-event amplitude fluctuations of vn and vm are
(anti-)correlated.

Also SC(m,n) can be normalizable with
〈
v 2
m

〉 〈
v 2
n

〉
SC(m, n)norm = SC(m, n)/

〈
v 2
m

〉〈
v 2
n

〉

Normalized SC(m,n) reflects the degree of the correlation.

While SC(m,n) contains both the degree of the correlation and individual vn.

2Ante Bilandzic et al., Phys. Rev. C 89, 064904 (2014)
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SC and Normalized SC

Measuring correlation with moments

This SC(m,n) can be calculated with multi-particle cumulants(QC) but also can be
calculated with Scalar Product method(SP) by using Moments3

M≡

〈∏
n

(Vn)kn (V ∗n )ln

〉
=

〈∏
n

(QnA)kn (Q∗nB)ln

〉
(4)

Then SC(m, n) can be expressed as

〈(QAnQ
∗
BnQAmQ

∗
Bm)〉 − 〈(QAnQ

∗
Bn)〉〈(QAmQ

∗
Bm)〉

where Qn is normalized flow Q-vector ( 1
M

∑M
i=1 e

inφi ), and A, B denotes sub event
groups which are divided with η gap

Auto(self) correlation term in red part with 4p correlation between QAn − QAm and
QBn − QBm, theses could be corrected by correction term
(credit : Ante and Sergei )

1

MB
Re(Q∗Bm+nQAmQAn)−

1

MA
Re(QAm+nQ

∗
BnQ

∗
Bm) +

1

MAMB
Re(QAm+nQ

∗
Bm+n)))

3Rajeev S. Bhalerao et al, http://doi.org/10.1016/j.physletb.2015.01.019
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Differential SC

Summary

Moments of the distribution of Vn provide a complete set of multiparticle correlation
, which can be used to probe the physics of flow fluctuations.

Flow fluctuations have been measured as SC and Normalized SC
SC(m,n) results with Q-Cumulants and Scalar Product are consistant within errors up
to 40% centrality bins
SC results( v2

n − v2
m correlation) and normalized SC(scaled with 〈v2

n 〉〈v2
m〉) results

shows similar trends with Hydrodynamics and AMPT simulation
Higher order SC correlations(SC(5,2), SC(5,3), SC(4,3)) are smaller then lower order
SC correlation(SC(3,2), SC(4,2))
But in normalized results, correlation between higher order flow harmonics are stronger
than lower order flow correlations

pT dependence of SC(m,n)
pT dependence of SC(3,2) and SC(4,2) are checked both in Data and AMPT
simulation but, no pT dependence for normalized SC(m,n) results up to 1.0GeV/c
we go to more higher pT cuts ¿ 1GeV /c, we start to see a clear pT dependence of
normalized SC, which might indicate the pT dependent flow angle fluctuations.
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How to estimate the systematics from the non-uniform φ efficiency ?
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1 Check the deviations of the observables with 3 different group of runs based on
χ2/NDF cuts.

2 Check the deviations between track selection cuts (TPCOnly:FilterBit128,
GlobalSDD:96.. ).

3 MC method using the large statistics AMPT sets (LHC13f3c,b,a)
Physical Primary particle only + imposing non-uniform φ distribution
φ distribution taken from the data
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SC(m,n) results with different TrackFilter bit
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cut filter bit comments

TPCOnly 128 ( 7 ) GetStandardTPCOnlyTrackCuts()
+ SetMinNClustersTPC(70)

GlobalSDD 96 ( 5|6) GetStandardITSTPCTrackCuts2010()
with requiring the first SDD cluster
instead of an SPD cluster

more fake and secondary tracks for TPCOnly track cut

two track cuts give relatively good uniform φ distribution
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Systematics of SC(m,n) with Efficiency correction
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correction to pT dependent efficiency
In following equations Gtrigvtx stands for the number of true charged

physical primaries emitted to |η| < 0.8 in triggered events where an event
vertex was reconstructed. C

(
pT
)

,

C−1 (pT ) =
Mtrigvtx

(
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)

+ B
(
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)

Gtrigvtx
(
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) , (5)

true efficiency = Mtrigvtx
(
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, (6)
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)
/
[
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)]
.(7)
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SC(m,n) AMPT results with large η
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When η region extend to large(forward) region, SC(m,n) values getting smaller

SC(m,n) with 0.4 < |η| < 0.8 have 5 times larger then SC(m,n) with 0.4 < |η| < 4.8
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Deviation of two different method comes from Non-flow effects?

Applying different ∆η for SP method. Generally we can easily expect that

Small η gap between subevent groups → big non-flow effect

Large η gap between subevent groups → small non-flow effect
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But, SP method with smaller ∆η results are more closes to QC method results.
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How about Normalized SC(m,n)?
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Centrality [%]
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But the Hydrodynamic calculations cannot capture the data well, a significant
deviation for SC(4,2) in 0-10%.

Actually, this is similar for individual vn’s, better agreement but the centrality
dependence doesn’t look good either.
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