Systematic studies of correlations between different order flow harmonics in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Myunggeun Song¹

¹Yonsei University

May 27, 2016

HIM 2016 05

based on arXiv:1604.07663

[Introduction](#page-1-0)

ALICE @ CERN

- LHC(Large Hadron Collider), SPS, PS
- 4 major experiments
- \bullet p+p collisions(as reference), Pb+Pb collisions

Compare with other experiments

[Introduction](#page-3-0)

ALICE Detectors

- **C** Centrality determination by V0(N_{ch} with scintillators in 2.8 $< \eta < 5.1$ and $-3.7 < \eta < -1.7$) in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV $\approx 20M$ events. Tracking - TPC tracks constrained to the primary vertex and full azimuthal
- acceptance (Unidentified charged particles $|\eta| < 0.8$, 0.2 $< \rho_T < 5.0$ GeV/c)

Evlolution of heavy ion collision

Visualization: madai.us

And it's results

First event from ALICE experiments in 2010

[Introduction](#page-6-0)

Flow analysis

As $\frac{dN}{d\phi}$ is a periodic function $(0\sim 2\pi)$, it can be expressed with Fourier transformation.

$$
\frac{dN}{d\phi} = \frac{x_0}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(A_n \cos n\phi + B_n \sin n\phi \right) \tag{1}
$$

If we define v_n and ψ_n such as,

$$
v_n^2 = A_n^2 + B_n^2, \ 0 \le \psi_n \le \frac{2\pi}{n}
$$
 (2)

Then we can express A_n and B_n with v_n and ψ_n . if we put back these into original equation (1) then

$$
\frac{dN}{d\phi} = \frac{x_0}{2\pi} + \frac{1}{2\pi} \sum_{n=1}^{\infty} (2v_n \cos n(\phi - \psi_n))
$$
(3)

And, we called v_n as flow constant, and ψ_n as event plane angle.

How to measure flow? (P. Danielewicz, G. Odyniec, Phys. Lett. 157B, 146 (1985))

Fourier decomposition is used to quantify the anisotropic distribution of produced particles

$$
\frac{dN}{d\phi}=\frac{v_0}{2\pi}+\frac{1}{2\pi}\sum_{n=1}\left(2v_n\cos n(\varphi-\psi_n)\right)
$$

• Flow magnitude v_n can be estimated with Event Plane method

$$
v_n\{EP\}=\langle\cos n(\varphi-\psi_n)\rangle
$$

or by measuring multi-particle correlation(Cumulant method)

$$
v_n\{2\}=\sqrt{\langle\cos n(\varphi_1-\varphi_2)\rangle}
$$

[Introduction](#page-8-0)

First results from PHENIX

- The second coefficient of Fourier's harmonics(v_2) is significantly larger then any other harmonics
- \bullet This v_2 values are grow as function of p_T and Centrality
- **•** This phenomenon was unique in heavy-ion collisions

Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)

Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)

[Introduction](#page-11-0)

Elliptic Flow

courtesy of Raimond Snellings (New J.Phys. 13 (2011) 055008)

Note

For better understanding, I'd like to make it sure that

- Reaction plane (RP) : Plane which is defined by IP and z-axis(beam direction)
- Participant plane (PP) : Effective RP affected by non-perfect isotropic shape
- (n-th order) Event plane (EP) : Mathmaticaly defined by above equation

Note

For better understanding, I'd like to make it sure that

- Reaction plane (RP) : Plane which is defined by IP and z-axis(beam direction)
- Participant plane (PP) : Effective RP affected by non-perfect isotropic shape
- (n-th order) Event plane (EP) : Mathmaticaly defined by above equation

Note!

$$
\Psi_{\text{RP}} \neq \Psi_{\text{PP}} \neq \Psi_{\text{EP}}
$$

Also,

$$
\frac{dN}{d\phi}=\frac{v_0}{2\pi}+\frac{1}{2\pi}\sum_{n=1}\left(2v_n\cos n(\varphi-\psi_{RP})\right)
$$

is not hold when we consider non-flow effects and non-ideal case

Schematics of Heavy ion collision

Schematic sketch of relativistic heavy ion collisions arXiv:1204.4795

A heavy ion collision can be divided into several stages,

- **•** Pre-equilibrium : Immediately after collision
- Deconfined state : QGP is formed and starts expanding
- Hadron gas : Quarks and gluons are bound into hadrons when temperature is sufficiently low
- Free streaming : Hadrons stop interacting and fly to the detector

Flow in Heavy-ion collisions Correlation between "Flow" and "System properties"

- Weakly coupled \rightarrow Long distance until next collision \rightarrow easy mixing
- Strongly coupled \rightarrow Short distance until next collision \rightarrow mixing take long time
- \bullet $\eta \propto l_{\text{mfp}} \propto 1/n_{\sigma}$
- The larger the corss-section, the smaller η , large v_2
- Stronger interaction \rightarrow Less viscous fluid
- Shear viscosity smears out flow differences (it's a diffusion)
- Shear viscosity reduces non-sphericity

Result : Large v_2 means, low η/s

Initial geometry and its fluctuations \rightarrow Transport properties ($\eta/s(T)$) \rightarrow final-state particles

R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007), "It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point."

courtesy of Biorn Schenke, "String theory (AdS/CFT correspondence) finds n/s is $1/4\pi$ a strongly coupled conformal theory \rightarrow hints at a lower bound of that order." [Introduction](#page-17-0)

Flow measurements in Heavy-Ion Collisions

- **The magnitudes of Flow-vector, anisotropic flow harmonics** v_n **, have been measured** in great details (centrality, p_T , η , PID)
	- Large elliptic flow has indicated fluid behavior of matter created at RHIC in early 2000's (BNL announces perfect liquid in 2005 press release)
	- The importance of fluctuations was realized later and analysis of odd flow harmonics began in 2010 (since B. Alver, G. Roland, Phys.Rev. C81, 054905)
- The fluctuations of each individual flow harmonic have been investigated in great details in recent years

[Introduction](#page-18-0)

Selected flow measurements at LHC in one slide

Correlation between flow-vectors

- \bullet Flow direction correlations: ψ_n and ψ_m correlations
- Flow magnitude correlations: v_m and v_n correlations
	- Are v_n and v_m correlated? anti-correlated? or not correlated?
	- How can we investigate the relationship between v_n and v_m without contribution of ψ_m and ψ_n

 v_4 {Ψ₂} $v_4\{\Psi_4\}$, $v_6\{\Psi_2\}$ v6{Ψ6} from ATLAS(arXiv:1403.0489), CMS (arXiv:1310.8651))

 $\langle \cos 4(\Phi_2 - \Phi_4) \rangle_w \equiv \frac{v_4 \{\Psi_2\}}{v_4 \{\Psi_4\}}$, which includes not only event plane angle correlations but also it's magnitude (J.Y.Ollitrault et. al., Phys.Lett. B744 (2015) 82-87)

multi-particle cumulant from ALICE (PRL 107 (2011) 032301)

Correlations of v_m and v_n

A linear correlation coefficient $c(v_n,v_m)$ was proposed (H. Niemi et al., Phys. Rev. C 87, 054901 (2013)) to study the correlations between v_n and v_m

- $c(v_2, v_3)$ is sensitive to initial conditions and insensitive to η/s , $c(v_2, v_4)$ is sensitive to both
- However, this observable is not easily accessible in flow measurements which are relying on two- and multi-particle correlations.

Symmetric 2-harmonic 4-particle Cumulants

New Observable : Symmetric 2-harmonic 4-particle Cumulants (SC) $¹$ </sup>

$$
\langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle_c = \langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos[m(\varphi_1 - \varphi_2)] \rangle \rangle \langle \langle \cos[n(\varphi_1 - \varphi_2)] \rangle \rangle = \langle \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle
$$

- **By construction not sensitive to**
	- non flow effects
	- inter-correlations of various symmetry planes
- It is non-zero if the event-by-event amplitude fluctuations of v_n and v_m are (anti-)correlated.

 1 Ante Bilandzic et al., Phys. Rev. C 89, 064904 (2014)

[Results](#page-22-0)

SC(m, n) results

 \bullet The positive values of $SC(4,2)$ and negative $SC(3,2)$ are observed for all centralities.

- suggests a correlation between v_2 and v_4 , and an anti-correlations between v_2 and v_3 .
- indicates finding $v_2 > \langle v_2 \rangle$ in an event enhances the probability of finding $v_4 > \langle v_4 \rangle$ and finding $v_3 < \langle v_3 \rangle$ in that event.

[Results](#page-23-0)

SC(m, n) results with HIJING: is Non-flow contribution?

- It is found that both $\langle v_m^2 v_n^2 \rangle$ and $\langle v_m^2 \rangle \langle v_n^2 \rangle$ are non-zero in HIJING, but calculation of SC(m,n) from HIJING are compatible with zero
	- suggests SC measurements are nearly insensitive to non-flow correlations
- non-zero values of SC measurements cannot be explained by non-flow effects, thus confirms the existence of (anti-)correlations between v_n and v_m harmonics.

[Results](#page-24-0)

SC(m, n) results : Comparisons to hydrodynamics

- Although hydro describes the v_n fairly well, there is not a single centrality bin for which a given η /s parameterization describes simultaneously SC(4,2) and SC(3,2)
- SC measurements provide stronger constrains on the η/s in hydro in combination with standard v_n measurements

Working on progress : Symmetric 2-harmonic 4-particle Cumulants

New Observable : Symmetric 2-harmonic 4-particle Cumulants (SC) ²

$$
\langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle_c = \langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos[m(\varphi_1 - \varphi_2)] \rangle \rangle \langle \langle \cos[n(\varphi_1 - \varphi_2)] \rangle \rangle = \langle \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle
$$

It is non-zero if the event-by-event amplitude fluctuations of v_n and v_m are (anti-)correlated.

Also SC(m,n) can be normalizable with $\left\langle \mathsf{v}^2_m \right\rangle \left\langle \mathsf{v}^2_n \right\rangle$

$$
SC(m, n)_{norm} = SC(m, n) / \langle v_m^2 \rangle \langle v_n^2 \rangle
$$

- Normalized SC(m,n) reflects the degree of the correlation.
- While $SC(m,n)$ contains both the degree of the correlation and individual v_n .

 2 Ante Bilandzic et al., Phys. Rev. C 89, 064904 (2014)

Measuring correlation with moments

This $SC(m,n)$ can be calculated with multi-particle cumulants(QC) but also can be calculated with Scalar Product method(SP) by using Moments³

$$
\mathcal{M} \equiv \left\langle \prod_n \left(V_n \right)^{k_n} \left(V_n^* \right)^{l_n} \right\rangle = \left\langle \prod_n \left(Q_{nA} \right)^{k_n} \left(Q_{nB}^* \right)^{l_n} \right\rangle \tag{4}
$$

Then SC(m, n) can be expressed as

 $\langle \left(Q_{An}Q_{Bn}^*Q_{Am}Q_{Bm}^*\right)\rangle - \langle \left(Q_{An}Q_{Bn}^*\right)\rangle \langle \left(Q_{Am}Q_{Bm}^*\right)\rangle$ \bullet

where Q_n is normalized flow Q-vector $(\frac{1}{M}\sum_{i=1}^M e^{in\phi_i})$, and A, B denotes sub event groups which are divided with η gap

Auto(self) correlation term in red part with 4p correlation between $Q_{An} - Q_{Am}$ and $Q_{Bn} - Q_{Bm}$, theses could be corrected by correction term (credit : Ante and Sergei)

$$
\frac{1}{M_B}Re(Q^*_{Bm+n}Q_{Am}Q_{An})-\frac{1}{M_A}Re(Q_{Am+n}Q^*_{Bn}Q^*_{Bm})+\frac{1}{M_AM_B}Re(Q_{Am+n}Q^*_{Bm+n})))
$$

 $3R$ ajeev S. Bhalerao et al, http://doi.org/10.1016/j.physletb.2015.01.019

Summary

- \bullet Moments of the distribution of V_n provide a complete set of multiparticle correlation , which can be used to probe the physics of flow fluctuations.
- Flow fluctuations have been measured as SC and Normalized SC
	- SC(m,n) results with Q-Cumulants and Scalar Product are consistant within errors up to 40% centrality bins
	- SC results($v_n^2 v_m^2$ correlation) and normalized SC(scaled with $\langle v_n^2 \rangle \langle v_m^2 \rangle$) results shows similar trends with Hydrodynamics and AMPT simulation
	- \bullet Higher order SC correlations(SC(5,2), SC(5,3), SC(4,3)) are smaller then lower order SC correlation(SC(3,2), SC(4,2))
	- But in normalized results, correlation between higher order flow harmonics are stronger than lower order flow correlations
- \bullet p_T dependence of SC(m,n)
	- p_T dependence of SC(3,2) and SC(4,2) are checked both in Data and AMPT simulation but, no p_T dependence for normalized SC(m,n) results up to 1.0GeV/c
	- \bullet we go to more higher pT cuts *i* 1GeV /c, we start to see a clear pT dependence of normalized SC, which might indicate the pT dependent flow angle fluctuations.

Backup Slides

Backup

How to estimate the systematics from the non-uniform ϕ efficiency ?

- **•** Check the deviations of the observables with 3 different group of runs based on χ^2/NDF cuts.
- **2** Check the deviations between track selection cuts (TPCOnly:FilterBit128, GlobalSDD:96..).
- ³ MC method using the large statistics AMPT sets (LHC13f3c,b,a)
	- Physical Primary particle only $+$ imposing non-uniform ϕ distribution
	- \bullet ϕ distribution taken from the data

SC(m,n) results with different TrackFilter bit

- more fake and secondary tracks for TPCOnly track cut
- \bullet two track cuts give relatively good uniform ϕ distribution

Systematics of SC(m,n) with Efficiency correction

correction to p_T dependent efficiency

In following equations G_{trigvtx} stands for the number of true charged physical primaries emitted to $|\eta| < 0.8$ in triggered events where an event vertex was reconstructed. $C(p_{\mathcal{T}})$,

$$
C^{-1} \left(p_T \right) = \frac{M_{\text{trigvtx}} \left(p_T \right) + B \left(p_T \right)}{G_{\text{trigvtx}} \left(p_T \right)}, \tag{5}
$$

true efficiency =
$$
M_{\text{trigvtx}}(p_T) / G_{\text{trigvtx}}(p_T)
$$
, (6)
continuation = $B(p_T) / [M_{\text{trigvtx}}(p_T) + B(p_T)](7)$

 $SC(m,n)$ AMPT results with large η

- When η region extend to large(forward) region, $SC(m,n)$ values getting smaller
- SC(m,n) with $0.4 < |\eta| < 0.8$ have 5 times larger then SC(m,n) with $0.4 < |\eta| < 4.8$

Deviation of two different method comes from Non-flow effects?

Applying different $\Delta \eta$ for SP method. Generally we can easily expect that

- Small η gap between subevent groups \rightarrow big non-flow effect
- Large η gap between subevent groups \rightarrow small non-flow effect

But, SP method with smaller $\Delta \eta$ results are more closes to QC method results.

How about Normalized SC(m,n)?

- **But the Hydrodynamic calculations cannot capture the data well, a significant** deviation for SC(4,2) in 0-10%.
- Actually, this is similar for individual v_n 's, better agreement but the centrality dependence doesn't look good either.