Plan for the Study of Nuclear Symmetry Energy at RAON

Young Jin Kim Rare Isotope Science Project (RISP) Institute of Basic Science (IBS)

> 2015 HaPhy-HIM Joint Meeting August 28th - 29th, 2015

Symmetry Energy Study at RAON

•Exploring the nuclear phase diagram via heady-ion collisions including the isospin axis using RI beams

•Role of isospin degree of freedom in strong interaction

-Nuclear symmetry energy from sub- to supra-saturation densities

-Characterization of the core of neutron stars

LAMPS(Large Acceptance Multi-Purpose Spectrometer) is going to study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment at RAON

Importance of Symmetry Energy

RAON

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005)

•Red boxes: added by B.-A. Li

Importance for understanding

- -Supernovae and neutron stars
- -Nuclear synthesis and exotic nuclei near neutron drip lines

RAON Accelerator Facility

Physics Observables

Important to measure system size (Ca, Ni, Ru, Zr, Sn, Xe, Au, U), energy (lowest to top energies),

- centrality, rapidity & transverse momentum dependence
- 1.Particle spectrum, yield, and ratio

•n/p, ${}^{3}H(pnn)/{}^{3}He(ppn)$, ${}^{7}Li(3p4n)/{}^{7}Be(4p3n)$, $\pi^{-}(d\bar{u})/\pi^{+}(u\bar{d})$, etc

2.Collective flow

- • $v_1 \& v_2$ of n, p, and heavier clusters
- •Azimuthal angle dependence of n/p ratio w.r.t the reaction plane

3. Various isospin dependent phenomena

- •Isospin fractionation and isoscaling in nuclear multifragmentation
- •Isospin diffusion (transport)
- •Etc.

4. Pygmy and Giant dipole resonances

- •Energy spectra of gammas
- •Related to the radius of n-skin for unstable nuclei

Institute for Basic

RAON

RAON

RAON

week ending 23 SEPTEMBER 2005

Evidence for Pygmy and Giant Dipole Resonances in ¹³⁰Sn and ¹³²Sn

P. Adrich,^{1,4} A. Klimkiewicz,^{1,4} M. Fallot,¹ K. Boretzky,¹ T. Aumann,¹ D. Cortina-Gil,⁵ U. Datta Pramanik,¹ Th. W. Elze,² H. Emling,¹ H. Geissel,¹ M. Hellström,¹ K. L. Jones,¹ J. V. Kratz,³ R. Kulessa,⁴ Y. Leifels,¹ C. Nociforo,³ R. Palit,² H. Simon,¹ G. Surówka,⁴ K. Sümmerer,¹ and W. Waluś⁴

(LAND-FRS Collaboration)

¹Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany
²Institut für Kernphysik, Johann Wolfgang Goethe-Universität, D-60486 Frankfurt am Main, Germany
³Institut für Kernchemie, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
⁴Instytut Fizyki, Uniwersytet Jagielloński, PL-30-059 Kraków, Poland
⁵Universidad de Santiago de Compostela, 15706, Santiago de Compostela, Spain
(Received 29 April 2005; published 21 September 2005)

The dipole strength distribution above the one-neutron separation energy was measured in the unstable 130 Sn and the double-magic 132 Sn isotopes. The results were deduced from Coulomb dissociation of secondary Sn beams with energies around 500 MeV/nucleon, produced by in-flight fission of a primary 238 U beam. In addition to the giant dipole resonance, a resonancelike structure ("pygmy resonance") is observed at a lower excitation energy around 10 MeV exhausting a few percent of the isovector *E*1 energy-weighted sum rule. The results are discussed in the context of a predicted new dipole mode of excess neutrons oscillating out of phase with the core nucleons.

RAON

The beam of 132Sn and about 20 other isotopes of similar mass-to-charge (A/Z) ratio were produced by inflight fission of a ²³⁸U primary beam with an intensity of 1.4×10^8 ions/s incident on a Be target. Isotopes were selected according to their magnetic rigidity by the fragment separator FRS [14]. The secondary beams were delivered to the experimental setup with energies around 500 MeV/nucleon. For ¹³²Sn, the intensity amounted to about 10 ions/s on the target. The incoming projectiles were unambiguously identified event by event by determining their magnetic rigidity (with a position measurement in the dispersive midfocal plane of the FRS), time of flight, and energy loss. Projectiles were excited in a secondary ²⁰⁸Pb target (468 mg/cm²). Additional measurements were performed with a ¹²C target (370 mg/cm²) and without target. The results presented in this Letter were deduced from the data effectively collected for 4 days of beam time. The experimental setup and a beam-identification plot are shown in Fig. 1.

Experimental Setup

RAON

•We need to accommodate

- Large acceptance
- •Precise measurement of momentum (or energy) for variety of particle species, including $\pi^{+/-}$ and neutrons, with high efficiency
- Gamma detection for Pygmy and Giant dipole resonances
- Keep flexibility for other physics topic

•Beam

- •State beam: p, ¹²C, ⁴⁰Ca, ⁵⁸Ni, ⁹⁶Ru, ⁹⁶Zr, ¹¹²Sn, ¹³²Xe, ¹⁵⁸Au, ²³⁸U, and more up to 250 MeV/u
- RI beam: Ca, Ni, Ru, Zr, Sn, Xe, and more up to 250 MeV/u *for commissioning
 *when it is available
 *if it is possible

LAMPS Experimental Setup

 $E_{beam} < 250 \text{ MeV/u for } ^{132}\text{Sn}$

For Study of Symmetry Energy at Supra-saturation Density via Heavy-Ion Collision Experiments and Nuclear Reaction Study

-Example of Reactions for Symmetry Energy Study:

Central and Peripheral Collisions ^{50,54}Ca + ⁴⁰Ca, ^{68,70,72}Ni + ⁵⁸Ni, ^{106,112,124,130,132}Sn + ^{112,118,124}Sn Si-CsI Array at Solenoid Spectrometer & Dipole Spectrometer are for future upgrade

RAON

LAMPS Experimental Setup Other Experimental Configuration

•GDR/PDR measurements

 $-^{124,130,132}$ Sn + 208 Pb, 68,70,72 Ni + 208 Pb, 50,54,60 Ca + 208 Pb, etc

Photoabsorption measurements

-Various 1n and 2n removal cross sections for unstable nuclei
•Measurement of E* from gamma, beam fragments, and neutrons

LAMPS Collaboration

RAON

• RISP - LAMPS Experimental Facility			 Chonnam National University CsI(Tl) detector R&D
 TPC R&D Solenoid Magnet DAQ System 	 Adopt & Use TPC GET electronics NARVAL DAQ 		 Kyungpook National University Si detector R&D
Korea University Newtween Detector and			• Inha University TPC treaking algorithm
 -Neutron Detector and Trigger/ToF Detector R&D - TPC Software Development - GEANT-4 simulation 		 Customized electronics by NOTICE 	18 people from 6 domestic institutes
 Chonbuk National 	University	,	Looking for more collaborators from

- GEANT-4 simulation

b Institute for Basic Science

- Neutron Detector R&D

Looking for more collaborators from both domestic and international >To form international collaboration

LAMPS Solenoid Magnet

Institute for Basic Science

Two domestic and one foreign magnet product companies express their interests

Neutron Background Simulation Study

Using IQMD central Au+Au events @ 250A MeV (n, p, some IMFs: most harsh case) →Varying thickness of return yoke to estimate neutron background →Analysis is in progress •Need to check physics package in GEANT4 •Will compare with UrQMD (n, p only) & Fluka events

LAMPS Solenoid Magnet

|초과학연구원

Institute for Basic Science

- Solenoid magnet design is being modified
 - For better neutron measurement
 - Higher order harmonics occurs but the influence is only < 0.5% in addition to the deviation of magnetic field from previous design</p>
 - Further improvement is in progress
 - > After modification, GEANT-4 simulation is required

LAMPS Time Projection Chamber (TPC)

* RAON

- Field : 0.5 Tesla
- Time Projection Chamber (TPC) -1 x 1.2 m² cylindrical shape -Triple GEM based & pad readout in end-caps -Large acceptance (~ 3π sr) ★Complete 3D charged particle tracking ■Particle identification and momentum reconstruction

Outer field cage

LAMPS TPC R&D

Inner Field Cage install

Outer Field Cage install

Prototype TPC : back

same drift length as final TPC

Prototype TPC

•**Problem with GEM foils** -Found new GEM manufacture in Korea (produce GEM foil for CMS upgrade project)

LAMPS TPC GEM Foil R&D

Institute for Basic Sci

Using cosmic muon & ⁵⁵Fe source with GET electronics

RAON

LAMPS TPC GEM Foil R&D ADC distribution

LAMPS TPC GEM Foil R&D

|초과

Institute for Basic Science

* RAON

Comparison between data and ref.

Different test setup and gap distances between GEMs

LAMPS TPC Software Development

• Digitization process is developed to simulate ionization, **Monte-Carlo** simulation diffusion of electrons and response of GEM and pad. **Drifting electron Task Digitized Event Diffusion of electron** diffusion (cm) $\bullet \sigma_{diffusion}$ y (cm) 10³ **Avalanche Task** Digitization 0.9 0.8 0.7 **Pad Response Task** 20 10² 0.6 10 0.5 Clusterization 0.4 0.3 10 **Riemann Tracking** Reconstruction 0.2 0. -50^{LL} -50 **Kalman Filter** -40 -30 -20 -10 0 10 20 0 50 20 30 40 60 40 50 10 30 drift length (cm) x (cm) * Points indicate σ of diffusion

• LAMPSROOT is developed based on FAIRROOT.

Institute for Basic Science

RAON

 10^{3}

= 10²

10

Momentum resolution as a function of polar angle

- Proton with different momentum including smearing

readout pad size inner radius = 3 x 10 mm² outer radius = 4 x 15 mm² Transverse momentum resolution as a function of transverse momentum

- 600 MeV/*c* transverse momentum proton including smearing

Initial number of readout pad ~ 100k channels →Aiming to reduce readout channels ~ 50k

Without any influence for physics measurements, require complete simulation for different design of readout pad to estimate position & momentum resolutions, etc -Working in progress

LAMPS Forward Neutron Detector Array

* RAON

Proposed structure: 4 layers of plastic scintillators (2-m long)

+ 1 Veto plastic layer for charged particle rejection

- $\checkmark\,$ Energy range to measure: 30 $\sim\,300~MeV$
- $\checkmark\,$ Time resolution < 500 ps for ToF measurements
- $\checkmark \Delta E/E \sim 2 \ge 10^{-2}$ via TOF measurements
- ✓ ε = 0.60 for single-neutrons @ maximum 300 MeV (GEANT4)

LAMPS Neutron Detector R&D

RAON

Single detector module

LAMPS Forward Neutron Detector Array R&D

Real size prototypes with commercial electronics are tested with cosmic and radioactive sources

Institute for Basic

radioactive sources -intrinsic time resolution = 392 ps -position resolution = 6.62 cm -good separation of gamma and neutron Plan to test them again with customized electronics & beam test

raon

Science Project

LAMPS DAQ System

- LAMPS group at RISP develops DAQ based on NARVAL DAQ at GANIL
 - -Widely use for nuclear physics experiment
 - -Possibly extending to triggerless DAQ system
 - Plan to integrate TPC readout (GET system), PMT readout for Neutron & Trigger/ToF detectors (VME)

Summary

- •Large Acceptance Multi-Purpose Spectrometer (LAMPS) at RAON -Study of nuclear symmetry energy with RI and stable beam
 - -Particle yield, spectrum, ratio, collective flow, and other observables for charged particles and neutron
 - -Solenoid spectrometer (solenoid magnet + TPC + plastic scintillators for
 - trigger & ToF + Si-CsI detector*)
 - & neutron detector array
 - & dipole spectrometer (magnet system + focal plane detector)*
 - *for future upgrade
 - ✓ To cover entire energy range of RAON with complete event reconstruction within large acceptance
 - -Design of experimental setups is almost complete
 - -Detector R&D is ongoing
 - -Getting more collaborators from not only both domestic and foreign but also nuclear structure
 - **Forming international collaboration**

