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Shell Model

• SM is a standard traditional tool in nuclear structure 

theory

• Core SM: e.g., 19F=core(16O)+p+n+n − inert core 16O 

times antisymmetrized function of 3 nucleons

• No-core SM: antisymmetrized function of all nucleons

• Wave function: 

• Traditionally single-particle functions            are 

harmonic oscillator wave functions 



Why oscillator basis?

• Any potential in the vicinity of its

minimum at r=r0 has the form

V(r)=V0+a(r-r0)
2+b(r-r0)

3+…,

i.e., oscillator is the main term

• Oscillator is a good approximation

for the standard Woods–Saxon

potential for light nuclei

• Since Shell Model was introduced,

oscillator become a language of

nuclear physics; a well-developed

technique for calculation of many-

body matrix elements of various

operators (kinetic and potential

energy, EM transitions, etc.) has

been developed for the harmonic

oscillator; the spurious C.M. motion

can be completely removed in the

oscillator basis only, etc.



Why oscillator basis?

The situation is worse in heavy 

nuclei, but the harmonic 

oscillator remains a standard 

language of nuclear physics…



Nmax truncation 

All many-body states with 

total oscillator quanta up to 

some Nmax are included in 

the basis space (Nmax or 

NħΩ truncation).

This truncation makes it 

possible to completely 

separate spurious CM 

excited states  



Shell Model

• Shell model is a bound state technique, no continuum spectrum; 

not clear how to interpret states in continuum above thresholds − 

how to extract resonance widths or scattering phase shifts

• HORSE (J-matrix) formalism can be used for this purpose
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usual way without additional complexities and to extract from 

them resonant parameters and phase shifts at low energies.
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• Other possible approaches: NCSM+RGM; Gamov SM; 

Continuum SM; SM+Complex Scaling; …

• All of them make the SM much more complicated. Our aim is to 

interpret directly the SM results above thresholds obtained in a 

usual way without additional complexities and to extract from 

them resonant parameters and phase shifts at low energies.

• I will discuss a more general interpretation of SM results



J-matrix (Jacobi matrix) 

formalism in scattering theory 

• Two types of L2 basises: 

• Laguerre basis (atomic hydrogen-like 

states) — atomic applications

• Oscillator basis — nuclear applications

• Other titles in case of oscillator basis:

HORSE (harmonic oscillator   representation 

of scattering equations),

Algebraic version of RGM



J-matrix formalism

• Initially suggested in atomic physics (E. Heller, H. Yamani,    

L. Fishman, J. Broad, W. Reinhardt) :          

H.A.Yamani and L.Fishman, J. Math. Phys 16, 410 (1975). 

Laguerre and oscillator basis.

• Rediscovered independently in nuclear physics (G. Filippov,   

I. Okhrimenko, Yu. Smirnov):

G.F.Filippov and I.P.Okhrimenko, Sov. J. Nucl. Phys. 32, 480 

(1980).  Oscillator basis.



HORSE:

J-matrix formalism 

with oscillator basis
• Some further developments (incomplete list; not 

always the first publication but a more transparent or 
complete one):
Yu.I.Nechaev and Yu.F.Smirnov, Sov. J. Nucl. Phys. 35, 808 
(1982)

I.P.Okhrimenko, Few-body Syst. 2, 169 (1987) 

V.S.Vasievsky and F.Arickx, Phys. Rev. A 55, 265 (1997)

S.A.Zaytsev, Yu.F.Smirnov, and A.M.Shirokov, Theor. Math. 

Phys. 117, 1291 (1998)    

J.M.Bang et al, Ann. Phys. (NY) 280, 299 (2000)

A.M.Shirokov et al, Phys. Rev. C 70, 044005 (2004)



HORSE:

J-matrix formalism 

with oscillator basis

• Active research groups:
Kiev: G. Filippov, V. Vasilevsky, A. Nesterov et al

Antwerp: F. Arickx, J. Broeckhove et al

Moscow: A. Shirokov, S. Igashov et al

Khabarovsk: S. Zaytsev, A. Mazur et al

Ariel: Yu. Lurie



HORSE:
• Schrödinger equation:

• Wave function is expanded in oscillator functions:

• Schrödinger equation is an infinite set of algebraic equations:

where H=T+V, 

T — kinetic energy operator, 

V — potential energy



HORSE:
• Kinetic energy matrix elements:

• Kinetic energy is tridiagonal:

• Note! Kinetic energy tends to infinity as n and n’=n, n±1 

increases: 



HORSE:
• Potential energy matrix elements:

• For central potentials only

• Note! Potential energy tends to zero as n and/or n’ increases:

• Therefore for large n or n’:

A reasonable approximation when n or n’ are large



HORSE:
• In other words, it is natural to truncate the potential energy:

• This is equivalent to writing the potential energy operator as

• For large n, the Schrödinger equation

takes the form



General idea of the

HORSE formalism
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General idea of the
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This is an exactly    

solvable algebraic problem!



General idea of the

HORSE formalism

This is an exactly    

solvable algebraic problem!

And this looks like a natural 

extension of SM where both 

potential and kinetic energies are 

truncated 



Asymptotic region n ≥ N

• Schrödinger equation takes the form of three-term recurrent relation:

• This is a second order finite-difference equation. It has two independent 
solutions:

where dimensionless momentum    

For derivation, see S.A.Zaytsev, Yu.F.Smirnov, and A.M.Shirokov, 
Theor. Math. Phys. 117, 1291 (1998) 



Asymptotic region n ≥ N

• Schrödinger equation:

• Arbitrary solution anl(E) of this equation can be expressed as a 

superposition of the solutions Snl(E) and Cnl(E), e.g.:

• Note that



Asymptotic region n ≥ N
• Therefore our wave function

• Reminder: the ideas of quantum scattering theory.

• Cross section

• Wave function

• δ in the HORSE approach is the phase shift!



Internal region 

(interaction region) n ≤ N
• Schrödinger equation

• Inverse Hamiltonian matrix:



Matching condition at n=N
• Solution:

• From the asymptotic region

• Note, it is valid at n=N and n=N+1. Hence

• This is equation to calculate the phase shifts. 

• The wave function is given by

where



Problems with direct HORSE application

• A lot of Eλ eigenstates needed while SM 

codes usually calculate few lowest states only

• One needs highly excited states and to get 

rid from CM excited states.

• are normalized for all states including the CM excited 

ones, hence renormalization is needed.

• We need            for the relative n-nucleus coordinate rnA but 

NCSM provides            for the n coordinate rn relative to the 

nucleus CM. Hence we need to perform Talmi-Moshinsky

transformations for all states to obtain            in relative             

n-nucleus coordinates.

• Concluding, the direct application of the HORSE formalism in   

n-nucleus scattering is unpractical.



Example: nα scattering



Single-state HORSE 

(SS-HORSE)

Suppose E = Eλ:

Eλ are eigenstates that are consistent with scattering information for

given ħΩ and Nmax; this is what you should obtain in any calculation

with oscillator basis and what you should compare with your ab

initio results.



Nα scattering and NCSM, JISP16                  



Nα scattering and NCSM, JISP16 



Single-state HORSE 

(SS-HORSE)

Suppose E = Eλ:

Calculating a set of Eλ eigenstates with different ħΩ and Nmax within 

SM, we obtain a set of            values which we can approximate by 

a smooth curve at low energies. 



Single-state HORSE 

(SS-HORSE)

Suppose E = Eλ:

Calculating a set of Eλ eigenstates with different ħΩ and Nmax within 

SM, we obtain a set of            values which we can approximate by 

a smooth curve at low energies. 

Note, information about wave 

function disappeared in this formula, 

any channel can be treated



S-matrix at low energies
Symmetry property:

Hence

As

Bound state: 

Resonance:



Universal function        

fnl (E) = arctan -
Snl (E)

Cnl (E)

æ

è
ç

ö
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S. Coon et al extrapolations

S. A. Coon, M. I. Avetian, 

M. K. G. Kruse, U. van Kolck,

P. Maris, and J. P. Vary,  PRC 86, 

054002 (2012)

What is λsc dependence  for 

resonances?



scaling withfnl (E) = arctan -
Snl (E)

Cnl (E)

æ

èç
ö

ø÷
lSC = mN W( ) / 2n + l + 3 2( )

q =
2E

W



Universal function scaling        

l=2

Ecm(MeV)Þ e =
Ecm[2(N +1)+ l + 3 2]

W

S.Coon et al (ir cutoff)

lSC = mN W( ) / Ntot + 3 2( )



How it works

• Model problem:  nα scattering by Woods-Saxon potential          

J. Bang and C. Gignoux, Nucl. Phys. A, 313 , 119 (1979).

• UV cutoff of S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van 

Kolck, P. Maris, and J. P. Vary,  PRC 86, 054002 (2012) to

select eigenvalues:
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nα scattering: NCSM, JISP16



Coulomb + nuclear interaction

• SS-HORSE:

• Scaling at 



S-matrix and phase shift

• No relation between a, b and c.



pα scattering: NCSM, JISP16
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pα scattering: NCSM, JISP16



Summary

• SM states obtained at energies above thresholds can 

be interpreted and understood.

• Parameters of low-energy resonances (resonant 

energy and width) and low-energy phase shifts can 

be extracted from results of conventional Shell Model 

calculations

• Generally, one can study in the same manner S-

matrix poles associated with bound states and design 

a method for extrapolating SM results to infinite 

basis. However this is a more complicated problem 

that is not developed yet.
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