Recent updated results related to dimuons from CMS

Dong Ho Moon (Chonnam National University)

HIM Spring 2015, Pusan 16th May, 2015

Contents

- Updated psi(2S) results in PbPb using new pp sample
- Z boson measurement in PbPb and pPb collisions
- Summary

Updated $\psi(2S)$ in pp & PbPb collisions

HIM Spring 2015, Pusan

$\psi(2S)$ measurement

- One of ccbar bound state (2S)
- Mass : 3.686 GeV/c²

 $\psi(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Г1	hadrons	(97.85±0.13) %	
Γ ₂	virtual $\gamma ightarrow $ hadrons	(1.73±0.14) %	S=1.5
۲ ₃	ggg	(10.6 \pm 1.6)%	
Γ ₄	γgg	(1.03±0.29) %	
Γ ₅	light hadrons	(15.4 ± 1.5)%	
Г ₆	e ⁺ e ⁻	$(7.73\pm0.17) imes10$	₎ –3
Γ ₇	$\mu^+\mu^-$	(7.7 \pm 0.8) $ imes$ 10	₎ –3
Г ₈	$ au^+ au^-$	(3.0 ± 0.4) $ imes$ 10)-3

Dong Ho Moon

HIM Spring 2015, Pusan

3685.6

3685.8

 $\psi(2S)$ mass (MeV)

Mechanism

 $\Psi(2s)$ decay

b-hadron decay

 χ_{c1} decay

3686

Direct Production

3686.2

ARTAMONOV 00

3686.4

 J/ψ feed down fractions

ARMSTRONG 93B

3686.6

OLYA

E760

(Confidence Level = 0.148)

 $\% \pm \text{Error}$

 $8.1 \pm 0.3^{|133|}$

 $25 \pm 5.0^{|133|}$

 $8.1 \pm 3.2^{\ 134}$

 41 ± 17

2.0

1.3 3.8

$\psi(2S)$ Measurements in NN

EPJ C 49 (2007) 559

- NA50 (PbPb) : stronger suppression of $\psi(2S)$ than J/ ψ in central collisions
- Cold nuclear matter effect (dAu) : stronger suppression of $\psi(2S)$ than J/ ψ in central collisions
- (Re)generation : less generation of $\psi(2S)$ than J/ ψ (X. Zhao and R. Rapp, Nucl. Phys. A 859(2011) 114)

Measured / Expected

Quarkonia Suppression in Hot Medium

- One of striking signatures for Quark-Gluon-Plasma (QGP) formation
- Sequential melting : different binding energies → bound states are melt sequentially in hot medium

Sequential melting \rightarrow a QGP thermometer

H. Satz, NPA 783 (2007) 249c.

2013 Heavy Flavor Measurements at RHIC and LHC (W. Xie)

• Quenched heavy quarks (energy loss): A.Rothkopf, PRL 108(2012) 162001

HIM Spring 2015, Pusan

6

Quarkonia Suppression in Hot Medium

CMS detector

)

Muon Reconstruction in CMS

Muon Reconstruction

Muon tracks in muon chamber (or segments) + tracks in inner tracker Excellent momentum resolution of tracking system.

✓ Overall resolution: 1~2 %

Quarkonia Acceptance

- ALICE: acceptance for $p_T > 0$
 - midrapidity: no absorber and low magnetic field
 - forward rapidity: longitudinal boost
- ATLAS and CMS: Muons need to overcome strong magnetic field and energy loss in the absorber
 - minimum total momentum p~3–5 GeV/c to reach the muon stations
 - Limits J/ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward rapidity: $p_T > 3 \text{ GeV/c}$
 - (values for CMS, but similar for ATLAS)
 - Y acceptance:
 - $p_T > 0 \text{ GeV/c}$ for all rapidity
- Complementary acceptances

Excited Quarkonia States in PbPb

Observed stronger suppression of excited states than ground state in bottomnia measurement. What about charmonia?

PRL 109 222301 (2012)

Previous results of $\psi(2S)$ Measurements

- Double ratio of inclusive $\psi(2S)$ to J/ψ
- Stronger suppression of $\psi(2S)$ than J/ ψ in mid-rapidity and high p_T (as predicted from sequential melting)
- Hint of $\psi(2S)$ enhancement relative to J/ ψ in central PbPb at low p_T and forward rapidity, however, severely limited by large pp uncertainty

CMS Integrated Luminosity, pp, 2013, $\sqrt{s} =$ 2.76 TeV

Thanks to pp run in 2013: ~ 20 times larger data sample

JHEP 02 (2012) 011

CMS Integrated Luminosity, pp, 2013, $\sqrt{s} = 2.76 \text{ TeV}$

• Thanks to pp run in 2013: ~ 20 times larger data sample

JHEP 02 (2012) 011

CMS Integrated Luminosity, pp, 2013, $\sqrt{s}=$ 2.76 TeV

- Thanks to pp run in 2013: ~ 20 times larger data sample
- Reject non-prompt contribution by cut on pseudo-proper decay length
- Keep 90% of prompt charmonia: cancels in double ratio
- Non-prompt contamination ~5%: included in systematic uncertainties

JHEP 02 (2012) 011

- Thanks to pp run in 2013: ~ 20 times larger data sample
- Reject non-prompt contribution by cut on pseudo-proper decay length
- Keep 90% of prompt charmonia: cancels in double ratio
- Non-prompt contamination \sim 5%: included in systematic uncertainties

Signal Extraction of Prompt $\psi(2S)$

JHEP 02 (2012) 011

- Signal region : Gaussian + CrystalBall functions
- Background region : Chebyshev polynomials (1 ≤ N ≤ 3) for each analysis bins
- Several fit functions were tested for systematics (8% 28%)

Prompt $\psi(2S)$ in mid-rapidity (high p_T)

PRL 113 (2014) 262301

 In high p_T (mid-rapidity): ψ(2S) in PbPb is smaller than in pp with respect to the J/ψ as seen with 2010 pp data.

Prompt $\psi(2S)$ in forward rapidity (low p_T)

PRL 113 (2014) 262301

In low p_T (forward-rapidity): $\psi(2S)$ in PbPb is higher(or less) ?? than in pp with respect to J/ψ , yet.

Double Ratio of Prompt $\psi(2S)$

- Observe a difference in $\psi(2S)$ production for both central and minbias PbPb at high p_T (mid-rapidity) vs low p_T (forward-rapidity)
 - At high p_T and mid-rapidity ψ(2S) is more suppressed than J/ψ in PbPb collisions (as expected from sequential melting)
 - At low p_T and forward rapidity ψ(2S) is less suppressed than J/ψ at mid-rapidity and high p_T (contrary to expectations from sequential melting and/or regeneration)

Comparison of ALICE and CMS

- Observe a difference in $\psi(2S)$ production for both central and minbias PbPb at high p_T (mid-rapidity) vs low p_T (forward-rapidity)
 - At high p_T and mid-rapidity ψ(2S) is more suppressed than J/ψ in PbPb collisions (as expected from sequential melting)
 - At low p_T and forward rapidity ψ(2S) is less suppressed than J/ψ at mid-rapidity and high p_T (contrary to expectations from sequential melting and/or regeneration)

Z boson in pp & pPb & PbPb collisions

Dong Ho Moon

HIM Spring 2015, Pusan

22

Z boson measurement

- Why we are interested in Z boson?
 - Elector+weak interacting particles are expected not to be modified by QGP.
 - It should be used as the reference for modified objects (quarkonia, light hadrons ... etc) ٠
 - Ultimately can help to constrain initial state standard candle of initial state.
- If the initial state effects would be influenced ... by
 - Nuclear shadowing : nPDF can be modified (suppressed in low x region than pp): 10-20 %
 - Isospin effect : Proton and neutron have different guark constituent : ~3 %
 - Energy loss and multiple scattering of initial parton : ~3 %

The first $Z \rightarrow \mu^{-}\mu^{+}$ candidate found in CMS heavy-ion collisions at 2010

PRL 106 (2011) 212301 2010

39 candidates

667 candidates

2013 JHEP 03 (2015) 022

• Uncertainties

	$Z \rightarrow \mu$	$\mu^+\mu^-$
Source	PbPb	pp
Combined efficiency	1.8%	1.9%
Acceptance	0.7%	0.7%
Background	0.5%	0.1%
$N_{ m MB}$	3.0%	_
$T_{\rm AA} \ (N_{\rm MB} \ {\rm included})$	6.2%	_
Integrated luminosity (L_{int})	_	3.7%
Overall (without T_{AA} or L_{int})	3.6%	2.0%
Overall	6.5%	4.2%

JHEP 03 (2015) 022

pp differential cross section

- Overall cross sections agree with the POWHEG theoretical prediction.
- Higher order correlation (~3%), Next-to-next-to-leading-order calculation (~3%) – grey band.

JHEP 03 (2015) 022

PbPb differential cross section

- p_T dependence : compatible to POWHEG theoretical prediction
- |y| dependence : compared to consideration of no nuclear effect (yellow band) or nuclear effect (green band)

JHEP 03 (2015) 022

PbPb differential cross section

Centrality dependence : no strong dependence observed. Compared to ۲ pythia pp cross section generated by POWHEG.

JHEP 03 (2015) 022

$$R_{\mathrm{AA}} = rac{N_{\mathrm{PbPb}}^{\mathrm{Z}}}{T_{\mathrm{AA}} imes \sigma_{\mathrm{pp}}^{\mathrm{Z}}} \equiv rac{N_{\mathrm{PbPb}}^{\mathrm{Z}}}{N_{\mathrm{coll}} imes N_{\mathrm{pp}}^{\mathrm{Z}}}$$

- No strong dependence on p_T and y as expected.
- R_{AA} is consistent with ~ 1 within uncertainties.

JHEP 03 (2015) 022

$$R_{\mathrm{AA}} = rac{N_{\mathrm{PbPb}}^{\mathrm{Z}}}{T_{\mathrm{AA}} imes \sigma_{\mathrm{pp}}^{\mathrm{Z}}} \equiv rac{N_{\mathrm{PbPb}}^{\mathrm{Z}}}{N_{\mathrm{coll}} imes N_{\mathrm{pp}}^{\mathrm{Z}}}$$

- No strong dependence on centrality as expected.
- R_{AA} is consistent with ~ 1 within uncertainties.

CMS-PAS-HIN-14-003

 $L = 34.6 \text{ nb}^{-1}, 5.02 \text{ TeV collision}$

- Selection condition
 - Muon : $p_T > 20$ GeV/c, $|\eta^{\mu}| < 2.4$
- Asymmetric acceptance in rapidity due to the boost in center of mass frame

2183 Z candidates

CMS-PAS-HIN-14-003

Inclusive cross section of Z production

$\sigma(pPb \rightarrow Z \rightarrow \mu\mu)$	Measured $\sigma \pm \text{stat.} \pm \text{syst.} \pm \text{lumi.}$	$\sigma^{\text{NLO POWHEG}} \times A$
Full phase space	134.4 ± 2.9 ± 7.1 ± 4.7 nb	134 ± 7 nb
-2.5 < y _{c.m.} < 1.5	94.1 ± 2.1 ± 2.4 ± 3.3 nb	94.0 ± 4.7 nb

- Compared to NLO POWHEG calculation scaled by 208
- Results consistent with $\sigma^{pp} x A (208)$

CMS-PAS-HIN-14-003

Inclusive cross section of Z production

Measured NI O POWHEG Table 1: Summary of the relative systematic uncertainties on the inclusive and differential cross sections.

Source	σ (inclusive)	$\sigma(y_{\rm c.m.} \in (-2.5, 1.5))$	$d\sigma/dp_{\rm T}$	$d\sigma/dy_{\rm c.m.}$
Acceptance	4.7%	0.9%	0.4% - 1.2%	0.1% - 1.1%
Efficiency from MC	0.2%	0.2%	0.1% – 0.3%	0.01% - 0.9%
Data/MC efficiencies	1.7%	1.7%	1.7%	1.7% - 3.4%
Background	1.7%	1.8%	0.3% - 5.4%	0.5% - 2.4%
Overall	5.3%	2.6%	2.1% - 6.3%	1.9% - 4.3%
Luminosity		3.5%		

Results consistent with $\sigma^{pp} x A (208)$

CMS-PAS-HIN-14-003

Differential cross section of Z production vs y ۲

- $d\sigma/dy$ shifted to center of mass frame
- Dominant uncertainty comes from statistics
- Consistent with pp prediction scaled by A

CMS-PAS-HIN-14-003

• Differential cross section of Z production vs y

• Nuclear effects expected in the forward and backward regions.

CMS-PAS-HIN-14-003

Forward-backward ratio : expected to be more sensitive to nuclear effects

$$R_{FB} = \frac{d\sigma(+y_{\rm c.m.})/dy}{d\sigma(-y_{\rm c.m.})/dy}$$

- Hint of nuclear effect visible
- Large statistical uncertainties in data

40

CMS-PAS-HIN-14-003

- Differential cross section vs p_T
 - Large covering p_T range [0, 150] GeV/c
- Expected nuclear effects are small
 - Comparing to only pp
- Compared to pythia and POWHEG

CMS-PAS-HIN-14-003

- Differential cross section vs p_T
 - Large covering p_T range [0, 150] GeV/c
- Expected nuclear effects are small
 - Comparing to only pp
- Compared to pythia only : better agreement in low p_T region.

Summary

- Double ratio of prompt $\psi(2S)$ in PbPb
 - Observed clear difference mid-rapidity (high p_T) and forward rapidity (low p_T)
 - Need more statistics
- Z boson in pp, pPb and PbPb
 - Observed no modification in PbPb
 - Observed hint of nuclear effect visible in pPb

43

Summary

Back up

R_{AA} vs binding energy

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ″
mass $[GeV]$	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \; [\text{GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
$r_0 \; [{ m fm}]$	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

Table 3: Quarkonium Spectrosco

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN12014

Results from PbPb Collisions

Double Ratio

Y(2S) and Y(3S) are more suppressed than Y(1S)

$$\begin{split} R_{AA}(\Upsilon(1S)) &= 0.56 \pm 0.08(\text{stat}) \pm 0.07(\text{syst}), \\ R_{AA}(\Upsilon(2S)) &= 0.12 \pm 0.04(\text{stat}) \pm 0.02(\text{syst}), \\ R_{AA}(\Upsilon(3S)) &= 0.03 \pm 0.04(\text{stat}) \pm 0.01(\text{syst}) \\ &< 0.10(95\%\text{CL}). \end{split}$$

Y(3S) are more suppressed than Y(2S).

Ordering: $R_{AA}(Y(3S)) < R_{AA}(Y(2S)) < R_{AA}(Y(1S))$

HIM Spring 2015, Pusan

Muon Pair Acceptance

The life of Quarkonia in the Medium can be Complicated

- <u>Observed J/ψ is a mixture of direct production+feeddown (R. Vogt: Phys. Rep. 310, 197 (1999)).</u>
 - All J/ $\psi \sim 0.6$ J/ ψ (Direct) + ~0.3 χ_c + ~0.1 ψ '
 - B meson feed down.
 - Important to disentangle different component
- <u>Suppression and enhancement in the "cold" nuclear medium</u>
 - Nuclear Absorption, Gluon shadowing, initial state energy loss, Cronin effect and gluon saturation (CGC)
 - Study p+A collisions
- <u>Hot/dense medium effect</u>
 - J/ ψ , Y dissociation, i.e. suppression
 - Recombination, i.e. enhancement
 - Study different species, e.g. J/psi, Υ
 - Study at different energy, i.e. RHIC, LHC

<N_{coll}> from different methods agree well

Defining centrality from different methods:

+ How do we quantify medium effects ?

- N_{part}: number of nucleons which undergo at least one collision
- N_{coll}: number of n+n collisions taking place in A+B collision

• Modification nuclear factor $R_{AA} = \frac{1/N_{evnts}d^2N^2/dydp_T}{< T_{AB} > d^2\sigma_{pp}/dydp_T}$

quantifies the effect of the medium on a particle production

- To compare measured PbPb yields to theoretical pp cross sections, we need T_{AB} : nuclear overlap function
 - In absence of medium effects
 - R_{AA} = 1 for perturbative probes
 - T_{AB} is proportional to N_{coll}
 - **30-100%** : $T_{AB} = 1.45 \pm 0.18 \text{ mb}^{-1}$
 - $= 10-30\% : T_{AB} = 16.6 \pm 0.7 \text{ mb}^{-1}$
 - 0-10% : $T_{AB} = 23.2 \pm 1.0 \text{ mb}^{-1}$

 \mathbf{B} \mathbf{B}

NATIONA

Lamia, B. "Observation of Z Boson Production in Heavy Ion Collisions at CMS" Moriond QCD and High Energy Interactions, 2011

Dong Ho face

Single Muon Acceptance

$$\begin{split} |\eta^{\mu}| < 1.0 \rightarrow p_{T}^{\mu} > 3.4 \text{ GeV}/c \\ 1.0 \leq |\eta^{\mu}| < 1.6 \rightarrow p_{T}^{\mu} > 5.8 - 2.4 \times |\eta^{\mu}| \text{ GeV}/c \\ 1.6 \leq |\eta^{\mu}| < 2.4 \rightarrow p_{T}^{\mu} > 3.3667 - 7/9 \times |\eta^{\mu}| \text{ GeV}/c \end{split}$$

Aloguium 25 September 2014 Dong 🗄

Reconstruction Efficiency

Quarkonia Acceptance

Binding Energy of Quarkonia

state	J/ψ	χ_c	ψ'	Υ	χ_b	Ϋ́	χ_b'	Υ″
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
ΔE [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

Heavy ion program timeline

- PbPb statistics: 1.5nb⁻¹ and 10nb⁻¹ PbPb
- · What is the expected pp statistics we should use?

Yen-Jie Lee (CERN)

High pT PInG Input

Drig në moon

pp DiMuon

Z boson measurement in CMS

2013 JHEP 03 (2015) 022

	${ m Z} ightarrow \mu^+ \mu^-$		$Z \rightarrow c$	e^+e^-
Source	PbPb	pp	PbPb	pp
Combined efficiency	1.8%	1.9%	7.4%	7.7%
Acceptance	0.7%	0.7%	0.7%	0.7%
Background	0.5%	0.1%	2.0%	1.0%
$N_{ m MB}$	3.0%	_	3.0%	_
$T_{ m AA} \ (N_{ m MB} \ { m included})$	6.2%	_	6.2%	_
Integrated luminosity $(L_{\rm int})$	_	3.7%	_	3.7%
Overall (without T_{AA} or L_{int})	3.6%	2.0%	8.3%	7.8%
Overall	6.5%	4.2%	9.9%	8.6%

Table 2. Summary of systematic uncertainties in the $Z \rightarrow \mu^+\mu^-$ and e^+e^- yields. PbPb values correspond to the full 0–100% centrality range. $N_{\rm MB}$ is the number of MB events corrected for the trigger efficiency.

