Heavy-Ion Meeting (HIM 2014-12) Haeundae Grand Hotel, Busan, Korea, 5-6 December, 2014

Long-Range Correlations and Implication to Collectivity in pPb & PbPb from CMS

Byungsik Hong (Korea University)

for the

Collaboration

1. Introduction

- A brief history of near-side ridge and away-side conical emission in long-range correlations in heavy-ion collisions
- CMS detector system and heavy-ion runs
- 2. Recent experimental data
 - Long-range correlations in pPb and PbPb
 - Elliptic and triangular flows in pPb and PbPb
 - Pseudo-rapidity dependence of flow parameters in pPb
 - Flow of identified particles $(K_s^0 \text{ and } \Lambda/\overline{\Lambda})$
- 3. Summary

 First observation of near-side ridge in central Au+Au at 200 GeV in <u>QM2006</u> in Shanghai by two-particle correlations

 First observation of away-side conical emission in central Au+Au at 200 GeV in <u>QM2006</u> in Shanghai by two-particle correlations

Ridges in PbPb @ LHC

 LHC experiments observed near-side ridge and awayside conical emission in central PbPb at 2.76 TeV in QM2011 in Annecy

Striking near-side ridge in high-multiplicity pp events
Not observed before in either hadron collisions or MC models

High-Multiplicity pp Event

CMS Experiment at the LHC, CERN

Data (ecorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST)

Run / Event, 139779 / 4994190

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration.

High-Multiplicity pp Events

Very high particle density regime Is there anything interesting happening?

Dedicated triggers on high multiplicity events from a single collisions (not pileup!)

N^{online} > 85 trigger <u>un-prescaled</u> for full 980 nb⁻¹ data set

JHEP 09, 091 (2010)

~350k top multiplicity events (N>110) out of 50 billion collisions!

Proposed Interpretations ~06'

- Ridge
 - QCD bremsstrahlung radiation boosted by transverse flow
 - In-medium radiation and longitudinal flow push
 - Broadening of quenched jets in turbulent color fields
 - Recombination between thermal and shower partons at intermediate p_T
 - Momentum kick model
- Conical emission
 - Shock-wave excitation by supersonic partons (QCD Mach cone)
 - Hydrodynamics, Colored plasma, AdS/CFT, etc.
 - Cherenkov gluon radiation
 - Jet deflection
 - And more ...

Alternative Interpretation

Fluctuation+Higher-order flow terms $(v_2, v_3, v_4, v_5, ...)$

HIM 2014-12

5-6 December 2014

HIM 2014-12

• Ridge in PbPb collisions tends to diminish at high p_T .

- dihadron correlations
- Flow driven correlations: $V_n^f(p_T^{trig}, p_T^{assoc}) = v_n^f(p_T^{trig})v_n^f(p_T^{assoc})$
- Complimentary to other standard flow methods (EP, cumulants, LYZ)

HIM 2014-1

- Long-range correlation (ridge)
- Extracted flow parameters ($v_2 \& v_3$)
- Color connection between jets
- Hydrodynamic flow of QGP, etc.

- Pixels (66M channels) + Silicon Microstrips (9.6M channels)
- 220 m² of silicon sensors

Heavy-Ion Related Data Samples

Period	System	$\sqrt{s_{NN}}$ (TeV)	Int. L	Comment
Dec. 2010	Pb+Pb	2.76	7 μb ⁻¹	
Dec. 2011	Pb+Pb	2.76	150 μb ⁻¹	
Mar. 2011	p+p	2.76	230 nb ⁻¹	Reference
Jan. 2013	p+Pb	5.02	35 nb ⁻¹	
Feb. 2013	p+p	2.76	5.4 pb ⁻¹	Reference

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

- Almost same N_{coll} scaled luminosities for pp, pPb & PbPb
 - As many as Z's and W's
- Recent improvements (compared to QM2012)
 - PbPb results updated with 20 times more pp reference data
 - New pPb results

Relevant Formulae

• Cumulants formed from v_n moments $c_n\{2\} = \langle \langle 2 \rangle \rangle$ $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2$ $c_n\{6\} = \langle \langle 6 \rangle \rangle - 9 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \langle \langle 2 \rangle \rangle^3$, etc.

where, for example,

$$\langle 6 \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \right\rangle \\ \equiv \frac{1}{P_{M,6}} \sum_{i \neq j \neq k \neq l \neq m \neq n}^{M} e^{in(\phi_i + \phi_j + \phi_k - \phi_l - \phi_m - \phi_n)} \\ \text{and } \left\langle \langle \cdot \rangle \right\rangle \text{ means the average of over all particles fractional states are explicitly in the second states of the second states are explicitly below on the second$$

rom all events within a given multiplicity range

Flow coefficients from cumulants

$$v_n\{2\} = \sqrt{c_n\{2\}}, v_n\{4\} = \sqrt[4]{-c_n\{4\}}, v_n\{6\} = \sqrt[6]{\frac{1}{4}}c_n\{6\},$$

$$v_n\{8\} = \sqrt[8]{-\frac{1}{33}}c_n\{8\}$$
, etc.
A. Bilandzic, et al.,
Phys. Rev. C 83, 044913 (2011)

CMS, PLB 724, 213 (2013)

Relative fluctuation N. Borghini, P. M. Dinh, J.-Y. Ollitrault, arXiv:nucl-ex/0110016

- Fourier expansion also works well for the long-range correlations in pPb.
- v₂{2} contains some non-flow components.

PAS HIN-14-006

- 6- & 8-particle cumulants: Insensitive to non-flow contributions
- Lee-Yang Zeros (LYZ): All particle correlations

- v_2 {4}, v_2 {6}, v_2 {8} and v_2 {*LYZ*} are in good agreement within ±10% • True collectivity observed in pPbl
- True collectivity observed in pPb!

PAS HIN-14-006

- Fluctuation-driven initial-state eccentricity in hydrodynamics in pPb
 - A. Bzdak, P. Bozek, and L. McLerran, arXiv: 1311.7325
 - L. Yan and J.-Y. Ollitrault, PRL 112, 082301 (2014)

CMS, PLB 724, 213 (2013)

 Remarkable similarity in the v_3 signal as a function of multiplicity in pPb and PbPb

Near-side ridge yields show different η dependences for both triggers.

Long range data used for single $v_n(\eta_{assoc})/v_n(0)$

- Extract V_2 and V_3 from the Fourier decomposition
- Assuming factorization, $V_n(\eta_{trig}, \eta_{assoc}) = v_n(\eta_{trig})v_n(\eta_{assoc})$
- Self-normalized single particle flow parameter $v_n(\eta_{assoc})/v_n(0)$
- Practically, $v_n(\eta_{assoc})/v_n(0) = V_n(\eta_{trig}, \eta_{assoc})/V_n(\eta_{trig}, 0)$

- v_2 is η dependent: Larger v_2 with higher particle density
- v₂ from low-multiplicity subtraction: asymmetric about mid-rapidity
- With large errors, we cannot draw any conclusion yet for v_3 .

0 ղբ_

- Clean signal of K_s^0 and Λ reconstructed over a wide range of p_T and η .
- Masses are very close to PDG values.

PAS HIN-14-002

- Two-particle correlation functions are constructed for
 - $K_s^0 h^{\pm} : K_s^0$ as trigger, the charged hadrons as associated
 - Λh^{\pm} : Λ as trigger, the charged hadrons as associated

Elliptic Flow of Identified Particles

- Two-particle long-range correlation functions projected
- Fitted by the Fourier series function to extract V_n
- Extracted single particle v_n, assuming factorization:

$$v_n^{K_s^0} = V_n^{K_s^0 - h} / v_n^h, \qquad v_n^{\Lambda} = V_n^{\Lambda - h} / v_n^h$$

Elliptic Flow of Identified Particles

Mass ordering in p_T < 2 GeV/c and crossover in p_T > 2 GeV/c

p₊ (GeV)

p_ (GeV)

p₊ (GeV)

0.3

0.0

0.2

0

~

~

HIM 2014-12

p_ (GeV)

- Constituent quark scaling works better in pPb.
- Azimuthal anisotropy develops at the partonic level in pPb?

PAS HIN-14-002

Mass ordering and crossover also exist for v_3 at $p_T \sim 2$ GeV/c.

HIM 2014-12

1. Long-range correlation

- Near-side ridge structures exist in high-multiplicity pp, pPb and PbPb at LHC.
- Ridges can be caused by the initial-state geometry fluctuations in pPb as well as PbPb.
 - What about pp?
- 2. Flow
 - Strong elliptic and triangular flows exist in pPb and PbPb
 - Elliptic flow depends on pseudo-rapidity η in pPb:
 - No conclusion yet on the triangular flow due to large errors.
 - Mass ordering and crossover were observed in v_2 and v_3 for identified hadrons.
- 3. High-multiplicity pPb events show collectivity!

- Are these results in pPb related to hydrodynamic flow as in PbPb?