Exclusive reconstruction of open heavy flavor from CMS

<u>Hyunchul Kim</u> (Korea University) for the CMS collaboration

The 2014-12 Heavy Ion Meeting Haeundae Grand Hotel, Busan, Republic of Korea Dec. 5th. 2014

Exclusive reconstruction of open heavy flavor from CMS

- Introduction of open heavy flavor analysis
- Overview of Interesting channels
- Exclusive reconstruction process in CMS
- Experimental results
 - pPb collisions in 2013
 - 7 TeV pp, 2.76 TeV PbPb (inclusive)
- Summary

"Beauty" of open heavy flavor

Open heavy flavor meson = heavy quark + light quark

- Heavy quark (charm and bottom)
 - Heavy quark produced at hard scattering of partons
 - production time ~ 0.05~0.15 fm/c
 - Critical tool to test perturbative QCD calculations
 - With LO only access to qualitative results
 - With NLO, we can get the significant quantitative values
 - Heavy quarks in heavy-ion collisions : 10²
 reflect the effect of hot and dense
 medium as produced at early stage

"Beauty" of open heavy flavor

Open heavy flavor meson = heavy quark + light quark

- Heavy quark such as charm and bottom
 - Heavy quark produced at hard scattering of partons
 - production time ~ 0.05~0.15 fm/c
 - Critical tool to test perturbative QCD calculations
 - With NLO, we can get the significant quantitative values
 - With LO only access to qualitative results
 - Heavy quarks in heavy-ion collisions : reflect the effect of hot and dense medium as produced at early stage
- Light quark
 - To investigation of flavor dependence
- CMS have presented interesting results with open heavy flavor

Schematic view of open beauty

CMS

Hyunchul Kim (Korea University) - 2014-12 HIM meeting, Busan (Dec. 5th. 2014)

5

B-meson decay channel

- Easiest decay channel for each **B**-meson species
- Reconstructed by combination of
 - J/ψ (decay to muon pair)
 - tracks (charged pion or kaon)

 $m = 3.10 \text{ GeV/c}^2$

ст ⁼ 492 µ^m

J/w

Vertex

Primary Collision

Vertex

Reconstruction of particles in CMS detector

- Muon : inner track with matched segment in muon station
 - tracker and global muon (tracker track + standalone muon)
- Charged kaon or pion : charged track from inner tracker

Reconstruction of B mesons

- J/ ψ + 1~3 tracks (charged track applied p_T cut)
- Charged tracks and muons are reconstructed within $|\eta| < 2.4$
- Trigger on single muon (ex.p_T > 3 GeV/c for pPb analysis) or dimuon trigger
- Assigned the mass of kaon or pion to charged track

@ 5.02 TeV pPb collisions

- https://cds.cern.ch/record/1703520/files/HIN-14-004-pas.pdf

Signal extraction – B⁺, B⁰, B_s

- Signal : double Gaussian
- Background
 - Combinatorial background
 - 1st-order (for B⁺, B⁰) or 2nd-order (for B_s) polynomial
 - Peaking background (not for B_s)
 - Misreconstructed B-mesons except our signal (example at next slide)

Example of peaking backgrounds Lower mass peak due to B_s background

FILM

11

CMS

Differential cross-section

FONLL expectation as pp reference is calculated by

http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html

dσ / dp_T(μb GeV⁻¹c)

FONLL – for pp reference

- For comparison, pp reference is needed but we don't have data
- Alternative way : using FONLL (Fixed Order plus Next-to-Leading Logarithm) expectation
- Data agrees with the FONLL expectation at 1.96(p-pbar, CDF) and 7 TeV(p-p, ATLAS, CMS)
- Expect the same agreement at 5TeV collision also

Nuclear modification factor : R_{pA}^{FONLL}

 Within uncertainties, R_{pA}^{FONLL} imply no modification in pPb collisions compared by pp collisions for all three Bmesons

Rapidity dependence of B⁺ production

@ 7 TeV pp collisions@ 2.76 TeV PbPb collisions (inclusive)

pp results – reconstruction of candidates

- Using 2D simultaneous fit with invariant mass and proper decay length
- Need larger statistics to use this method
 - Until now, channel with J/ψ + 3 charged particles was tried

pp results – comparison with theory

- All the data is agreed with MC@NLO calculations "usually" within systematical uncertainties calculated by the variation of renormalization and factorization factors and different PDF functions
- **PYTHIA** is overestimated to data
- Motivation of pp reference for pPb analysis

- Left : In all rapidity bins at <u>high p_T region</u>, <u>centrality dependent</u> <u>suppression</u> is shown.
- Right : In the forward region, lower $p_T J/\psi$ has strong centrality dependence and less suppressed than high $p_T J/\psi$

Results@2.76 TeV PbPb collisions

Hyunchul Kim (Korea University) - 2014-12 HIM meeting, Busan (Dec. 5th. 2014)

20 💐

Summary

- In 7 TeV pp collisions, CMS measured data is compatible with NLO calculations within uncertainties
- In 2.76 TeV PbPb collisions, via non-prompt J/ ψ CMS measured b-quark energy loss
- In 5.02 TeV pPb collisions, nuclear modification factor with FONLL expectation is measured as unity within uncertainties

Stay tune to 2015 pp and PbPb collisions

Motivation for pp collisions

- Comparison between data and perturbative QCD prediction is critical test of NLO calculations
- In spite of the measurement with SPS and Tevatron, still exist large theoretical uncertainties remain due to the dependence on the renormalization and factorization scales
- Results by the LHC is expected to reduce the scale dependence of NLO QCD calculations

Why pPb collisions?

- Measure initial state modification of heavy quark production and cold nuclear matter effect and subtract them from final state effect (for pure effect of HI collisions)
- First measurement of exclusive B-meson production in pPb collisions

B-meson measurement in pPb collisions

- CMS recorded 5.02 TeV pPb collision data in 2013
 - LHC delivered 4 TeV (p) and 1.58 TeV/nucleon (Pb) beam
 - Integrated luminosity : 34.8±1.2 nb⁻¹
 - Rapidity boosted to proton going side(forward) by 0.465 in lab frame : asymmetric collision
- Open beauty measurement in pPb collisions
 - B+, B0, Bs trio is measured via dimuon decayed J/ ψ
 - Kinematic range covered
 - p_T : 10 60 GeV/c
 - rapidity : $|y_{CM}| < 1.93$ (ongoing to change to $|y_{LAB}| < 2.4$)
 - Consider charge conjugated mesons (i.e. B⁺ stands for both signs)

FONLL (Fixed Order plus Next-to-Leading Logarithms) is a code for calculating double-differential, single inclusive heavy quark production cross sections in pp(bar) and (electro)photoproduction

Matteo Cacciari - LPTHE

23/11/2010

Hyunchul Kim (Korea University) - 2014-12 HIM meeting, Busan (Dec. 5th. 2014)

FONLL

Summary of selection cuts

- Muon selection
 - tracker muon or global muon
 - pass TMOneStationTight
 - soft muon ID cut by muon POG
 - number of valid tracker layers > 5
 - number of pixel layers with valid hits > 0
 - chi2/ndf < 1.8
 - dxy < 3.0cm, dz < 30.0 cm
- J/ψ candidates
 - opposite sign muons
 - PDG mass within 0.3 GeV
 - Vertex probability > 1%

- Track selection
 - track p_T>0.9 GeV (B⁺), >0.7 GeV(B⁰, B_s)
 - track $|\eta|$ < 2.4 in lab frame
 - chi2/ndf < 5</p>
- Intermediate meson
 - probability of vertex > 1%
 - PDG mass within 0.9±0.4
 GeV for K*, 1.0±0.1 GeV for φ
- B candidate
 - probability of vertex > 1%
 - PDG mass within [5,6] GeV

27

Summary of optimized selection criteria

Variable for B-meson selection	B ⁺	B ⁰	B _s
χ^2 confidence level of B vertex fit	>0.013	>0.16	>0.037
distance between the primary and the B- decay vertices	>3.4	>4.2	>3.4
cosine value of angle between the displacement and the momentum of the B- meson in the transverse plane	> -0.35	> 0.75	> 0.26
difference of the mass between track-pair and resonant meson (unit : GeV/c ²)		<0.23	< 0.016

Acceptance and efficiency

• Raw yields are corrected for acceptance and efficiency

Efficiency

Rapidity conversion in between lab and CM frame

- General
 - Proton going direction have plus rapidity in CM frame
 - Merge bins with same rapidity in CM frame(same color in tables)
- 1st run
 - proton going to minus eta

$$y_{CM} = -y_{lab} - 0.465$$

30

yLAB	-2.4	-1.465	-0.465	+0.535	+1.470	+2.4
уСМ	1.935	1.0	0.0	-1.0	-1.935	-2.865
proton going direction						

• 2nd run

- proton going to plus eta $\qquad y_{\scriptscriptstyle CM} = y_{\scriptscriptstyle lab} - 0.465$

yLAB	-2.4	-1.470	-0.535	+0.465	+1.465	+2.4
уСМ	-2.865	-1.935	-1.0	0.0	1.0	1.935
proton going direction						

Prompt, non-prompt J/ ψ signal extraction

Reconstruct µ⁺µ⁻ vertex

 $\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$

- Separation of prompt and non-prompt J/ ψ
 - by 2D simultaneous fit of µ⁺µ[−] mass and pseudo-proper decay length

Β

31

Hyunchul Kim (Korea University) - 2014-12 HIM meeting, Busan (Dec. 5th. 2014)

J/ψ

Source of peaking background

- B⁺
 - lower mass : B+ decays J/ ψ + resonant meson decayed to kaon + X
 - B+ mass : B+ decays J/ ψ + pion misidentified as kaon
- B⁰
 - B decayed to J/ ψ + track + track
 - (ex. B⁰->J/ψ K(1270)⁰, B⁺->J/ψ K(1270)⁺)
 - B_s^0 ->J/ $\psi \phi$ (K misidentified as π), B⁰-> J/ ψ K⁺ π -
 - B⁺ decays J/ ψ + X
- B_s⁰
 - no peaking structure

Calculation of bjorken x

