J/ψ production in pPb and PbPb collisions by CMS

Songkyo Lee (Korea University) for the CMS collaboration

HIM 2014-12 Haeundae Grand Hotel, Busan, Korea 5th-6th December 2014

5th December 2014

HIM 2014-12

1

Outline

Introduction – collision systems

$^{\odot}$ J/ ψ in PbPb collisions

- Final state effects
- CMS detector & analysis method
- Nuclear modification factor RAA

• J/ ψ in pPb(dAu) collisions

- Initial state effects
- Nuclear modification factor R_{pPb} and R_{dAu}
- Status of J/psi analysis in pPb with CMS

System size study – Cu+Au collisions

Summary

Collision systems

JHEP 02 (2012) 011

PLB 727 (2013) 381

pp collisions

No single hadro-production model describes all quarkonia data.

Pb collisions

- Cold Nuclear Matter effects
- p_T broadening, Initial energy loss, absorption, nPDF, etc.

PbPb collisions

- Quark-Gluon plasma formation in central collisions (deconfined state of strongly interacting matter)
- Sequential suppression, recombination, etc.

final state effects in PbPb

Quarkonia

- Bound states of heavy quark and antiquark
- Large mass requires a large momentum transfer during the early stage. \Rightarrow Rewarful tool to probe OCR
 - \Rightarrow Powerful tool to probe QGP

Debye screening (suppression)

- Loosely bound states (with smaller binding energies) melt at lower temperature.
- Sequential melting of the quarkonia \Rightarrow Thermometer of QGP

Recombination (enhancement)

 combination of quarks and antiquarks which are initially produced in "different" nucleon-nucleon collisions.

	PLB 178 (1986) 416	PLB 490 (2000) 196	PRC 63 (2001) 054905
5th December 2014	HIM 2014-12		4

Centrality

Pb

Centrality

- related to the overlap fraction of the geometrical cross sections
- 0% is the most central, 100% is the most peripheral collisions.
- In CMS experiment defined by transverse energy deposit in HF

PP, pPb

Tracker

Muon Reconstruction

PbPb

Global

Muon

Excellent muon Identification and triggering in the muon system
 High momentum and vertex resolution of the tracking system

${}^{\odot}$ Separation of prompt J/ ψ and non-prompt J/ ψ

= 2-Dimensional simultaneous fit for $m_{\mu\mu} \& \ell_{J/\psi}$

5th December 2014

HIM 2014-12

R_{AA} vs centrality

Nuclear modification factor

arXiv.1311.0214

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{N_{AA}}{N_{pp}}$

: $R_{AA} = 1$ No modification compared to pp collisions

Centrality dependence

Different kinematic ranges, different collision energies, prompt vs inclusive

• **p**_T dependence

arXiv.1311.0214

• CMS and ALICE show similar suppression in the overlapping p_T range. • ALICE shows less suppression at low pT compared to PHENIX.

• **p**_T dependence

arXiv.1311.0214

 $^{\odot}$ CMS and ALICE show similar suppression in the overlapping p_{T} range.

- ALICE shows less suppression at low pT compared to PHENIX.
 - → Recombination contribution important at low p_T ?

arXiv.1311.0214

Rapidity dependence

 $R_{\rm AA}$ 1.4 CMS P<u>reli</u>minary PbPb√s_{NN} = 2.76 TeV 1.4 Inclusive J/w, Pb-Pb (s.m = 2.76 TeV 1.2 ALICE (arXiv:1311.0214) centrality 0%-90%, 0<p_<8 GeV/c global syst.= ± 8% 1.2 ALICE (arXiv:1311.0214), centrality 0%-90%, |y|<0.9 0.8 0.8 Prompt J/ψ 0.6 0.6 Shadowing in Pb-Pb [s_{NN} = 2.76 TeV 0.4 0.4 EPS09 shadowing (PRC 81 (2010) 044903), p_>0 GeV/c 0.2 nDSg shadowing (NPA 855 (2011) 327), p_>0 GeV/c 0.2 Cent. 0-100% 6.5 < p_ < 30 GeV/c 0.5 1.5 2.5 3 3.5 2 0 У

- CMS No strong rapidity dependence
- ALICE More suppression at forward rapidity
 - CNM models fail to describe data.

Initial state effects in pPb

- Before the hard scattering, multiple elastic scatterings can occur.
 - → Projectile can get p_T from soft scattering.
 - → Yields decrease at low p_T, while increase at intermediate p_T.

Initial State Energy Loss

- Energy loss by soft scattering reduces the initial energy of hard scattering.
- Yields decrease at forward rapidity, while increase at mid-rapidity regions.

Nuclear absorption

Right after cc_bar pairs are created,

they interact with surrounding nucleons and break up.

 negligible at LHC energy (crossing time shorter than quarkonia formation time)

PDF in nucleon

Parton Distribution Function in <u>nucleon</u>

- Q² : momentum transfer
- x : fraction of nucleon momentum carried by parton

- Distributions of partons are related to the momentum fraction, Bjorken x.
- At low x, gluons are saturated and occupancy becomes constant.

PDF in nucleus

• <u>nuclear</u> Parton Distribution Function

$$R_G^{Pb}(x,Q^2) = \frac{xG_A(x,Q^2)}{AxG_p(x,Q^2)}$$

- A : mass number of nucleus
- x : Bjorken x
- G_p : gluon structure function in proton
- G_A : gluon structure function in nucleus

- $R_i^{pPb} \neq 1$
 - : Parton distributions in nucleus are different from those in free nucleons.
- nPDF is different for various model predictions (especially at low x).

J/ψ in pPb with CMS

\odot J/ ψ in pPb collisions

- J/psi production measurements help in constraining nPDF of gluons, which dominate the production process.
- In case of $2 \rightarrow 1$ process, x_2 (of Pb nucleus) can be approximately :

- We expect to investigate smaller x regions than RHIC
- Different kinematics range (mid-rapidity, higher p_T) with ALICE, LHCb
 - \rightarrow Better understanding & more constraints on nPDF models

R_{pPb} (R_{dAu}) vs rapidity

5th December 2014

HIM 2014-12

R_{pPb} (R_{dAu}) vs p_T

• Forward : R_{pPb} increases with p_T , goes to unity for $p_T > 5$ GeV • Mid-rapidity & backward : small p_T dependence, compatible with unity

- EPS09 calculation is consistent with data ($p_T > 2.5$ GeV).
- Energy loss shows disagreement at forward rapidity and low p_T .
- CGC overestimates suppression at forward rapidity.

CNM effects in PbPb?

 \square

 $R_{pPb}^{forward} X R_{pPb}^{backward} = R_{PbPb}$?

Assumption

- Production mechanism $g+g \rightarrow J/\psi$
- CNM effects factorize in p-nucleus and are donimated by shadowing

At low p_T,

enhancement (recombination scenario?)

- At high p_T
 ,
 - strong suppression

J/ψ analysis in pPb with CMS

Observables

- Production cross-sections
- Forward to backward ratios R_{FB}
- Event-activity dependence

Down to p_T~0 GeV/c

- Less background compared to PbPb collisions
- Tracker-tracker muon pairs can be used
- Basic technique is similar with PbPb analysis
- J/ψ Acceptance
 - at mid-rapidity : $p_T > 6.5 \text{ GeV/c}$
 - at forward rapidity : $p_T > 0 \text{ GeV/c}$

System size study

Both initial and final state effects depend on system size.

5th December 2014

Asymmetric mass collisions

Backward (Au-going)

Final state effects

- Higher energy density
 - more suppression
 - (or more enhancement?)

Cu+Au

Forward (Cu-going)

Initial state effects

- probes small x in Au
 - PDF more strongly modified in heavier Au compared to Cu.
- Longer crossing time for Cu than Au
 - energy loss depends on Au
 - break-up depends on Cu

5th December 2014

Asymmetric mass collisions

Backward (Au-going)

Final state effects

- Higher energy density
 - more suppression
 - (or more enhancement?)

Cu+Au

Forward (Cu-going)

Initial state effects

- probes small x in Au
 - PDF more strongly modified in heavier Au compared to Cu.
- Longer crossing time for Cu than Au
 - energy loss depends on Au
 - break-up depends on Cu

arXiv.1404.1873

- Initial state effects cause R decrease with centrality
 - Final state effects would increase R with centrality.

 This study may provide insight on the balance of hot and cold nuclear effects.

- J/ψ measurements in pp, pPb and PbPb collisions play a key role to understand and factorize the initial and final state effects.
- $^{\odot}$ In PbPb, suppression has been observed and its dependence on centrality, p_{T} and rapidity in different kinematic ranges and beam energies need to be interpreted further.
- In pPb, data can be described by several CNM models, especially nuclear shadowing, but no single models can describe all results.
- $^{\odot}$ System size can help to investigate the different sources of J/ ψ modification in heavy ion collisions.

BACK-UP

CMS detector

5th December 2014

Data taking

Ist PbPb run @ √S_{NN} = 2.76 TeV

- Nov. Dec. 2010
- Recorded luminosity by CMS : 7.28 µb⁻¹

● 1st pp run @ √S_{NN} = 2.76 TeV

- March 2011
- Recorded luminosity by CMS : 225 nb⁻¹

Our Solution ■ 2nd PbPb run @ √SNN = 2.76 TeV

Nov. – Dec. 2011

Recorded luminosity by CMS : 150 µb⁻¹

• pPb run @ √S_{NN} = 5.02 TeV

Jan. - Feb. 2013

Recorded luminosity by CMS : 35 nb⁻¹

Ond pp run @ √S_{NN} = 2.76 TeV

- Feb. 2013 (3 days)
- Recorded luminosity by CMS : 5.41 pb⁻¹

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

Dimuon mass plots - PbPb

Dimuon mass plots - pPb

Debye screening

Debye screening

- The larger the binding energy, the higher the dissociation temperature T_d.
- As temperature goes up, Debye length $r_{\lambda}(T)$ decreases.

Resonance	J/ψ	Ψ'	Υ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

HIM 2014-12

Prompt J/ ψ R_{AA}

Nuclear modification factor

CMS-PAS HIN-12-014

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}}{N_{pp}} \cdot \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}} : R_{AA} = 1 \text{ No modification compared to pp collisions}$$

Suppressed by factor ~5 in the most central bin

• No p_T and y dependent suppression is observed.

Prompt J/ψ R_{AA}

 \square

p_T dependence

Rapidity dependence

- Left : No strong dependence on rapidity at high p⁺ region
- Right : At forward rapidity region, lower $p_T J/\psi$ is slightly less suppressed in the most central bins.

400

Suppressed by factor ~3 in the most central bin

• Hints of smaller suppression at lower p_T region, mid-rapidity region

Information on the b-quark energy loss in medium

Non-prompt $J/\psi R_{AA}$

 \square

p_T dependence

Rapidity dependence

- Left : In all rapidity bins at high p_T region, centrality dependent suppression is shown.
- **Right** : In the forward region, lower $p_T J/\psi$ has strong centrality dependence and less suppressed than high $p_T J/\psi$.

400

Prompt J/ ψ R_{AA}

ALICE vs CMS

ALICE : μμ & ee channel

$R_{\rm AA}$ 1.4 $R_{\rm AA}$ 1.4 Pb-Pb \sqrt{s_NN} = 2.76 TeV ALICE Pb-Pb Vs.nn = 2.76 TeV 1.2 ALICE $J/\psi \rightarrow \mu^+\mu^-$, 2.5<y<4, centrality 0%–90% global syst. = ± 8% 1.2 e*e', lyl<0.8, p,>0 GeV/c global syst.= ± 13% CMS $J/\psi \rightarrow \mu^*\mu^*$, 1.6 global syst. = ± 8.3% µ+µ, 2.5<y<4, 0<p_<8 GeV/c global syst.= ± 15% 0.8 0.8 Π 1 Ŧ 0.6 0.6 1 11 11 ŧ 0.4 0.4 0.2 0.2 0 0 350 300 400 í٥ 50 100 150 200 250 2 3 5 8 0 1 6 7 9 10 $\langle N_{\rm part} \rangle$ $p_{_{\rm T}}$ (GeV/c)

ALICE : centrality 0-90%

• Nuclear absorption (break-up)

JHEP 0902:014 (2009)

Centrality in PbPb

related to the overlap fraction of the geometrical cross sections

Event-activity variables in pPb

• E_T^{HF} : raw transverse energy deposited in forward region HF (4<| η |<5.2)

Rapidity shift

nPDF: Theoretical Models

• Kopeliovich et. al.

- : Shadowing nDSg nPDFs
- : Cronin effect (parameterized from low energy data)
- : $\sigma_{\text{break-up}}$ (color dipole σ_{cc} from HERA)

• Landberg et. al.

- : Shadowing EKS98, nDSg, or EPS08 nPDFs
- : effective $\sigma_{break-up}$ (0, 2.6, 4.2, 6 mb)
- : No cronin effect
- : No initial state energy loss

• Nagle et. al.

- : Shadowing EPS09 nPDFs
- : $\sigma_{break-up}$ (0-20 mb)
- : Tried initial state energy loss

• Kharzeev et. al.

: Shadowing - Coherent scattering / Color Glass Condensate model

PRL 87 (2013) 034904

arXiv.0902.4154

Nucleon at rest

- Very complicated non-perturbative object...
- Contains fluctuations at all space-time scales smaller than its own size
- Only the fluctuations that are longer lived than the external probe participate in the interaction process
- The only role of short lived fluctuations is to renormalize the masses and couplings
- Interactions are very complicated if the constituents of the nucleon have a non trivial dynamics over time-scales comparable to those of the probe

Nucleon at higher energy

- Dilation of all internal time-scales of the nucleon
- Interactions among constituents now take place over time-scales that are longer than the characteristic time-scale of the probe

the constituents behave as if they were free

- Many fluctuations live long enough to be seen by the probe. The nucleon appears denser at high energy (it contains more gluons)
- Pre-existing fluctuations are totally frozen over the time-scale of the probe, and act as static sources of new partons

Color Glass Condensate

 $Q_{s}^{2}(x)$ defines the scale below which the gluon density saturates

Color Glass Condensate

$$Q_s^2 \propto x^{-0.3} A^{1/3} \rightarrow \text{saturation for low } x \text{ (high } \sqrt{s=1/x}\text{), large } A$$

 $\rightarrow Q_{s,LHC}^2 = 3 Q_{s,RHIC}^2$
 $\rightarrow Q_{s,Pb}^2 = 6 Q_{s,p}^2$

Forward-backward ratio

Forward-backward ratio

Shadowing + energy loss in good agreement with data

• pT dependence (suppression stronger at low p_T ?)

Reference cross-sections in pp at $\sqrt{s}=5~{\rm TeV}$

LHCb-CONF-2013-013

- > Input to the determination of the nuclear modification factor R_{pPb}
- Interpolated from measurements at 2.76 TeV, 7 TeV and 8 TeV
- Three different fit functions used to interpolate

 $(\sqrt{s}/p_0)^{p_1} \longrightarrow \text{adopted as nominal}$ $p_0 + p_1 \sqrt{s}$ $p_0 (1 - e^{p_1 \sqrt{s}})$

- Discrepancy between the three interpolated values taken as systematics
- Checked against functions from LO-CEM and FONLL

16

• **pp reference cross-section**: no measurement at required energy, need to interpolate. Two step procedure in both analyses.

- Dimuon analysis [1]:

I) \sqrt{s} interpolation: performed bin-per-bin in rapidity (or p_T) using available ALICE pp results at 2.76 and 7 TeV

2) Further rapidity extrapolation: due to rapidity shift, p-Pb y_{cms} -range lies slightly outside the pp y_{cms} -range

- Dielectron analysis:

I) \sqrt{s} interpolation: performed using available PHENIX, CDF and ALICE results at $y \approx 0$

2) p_T dependence: phenomenological scaling inspired by reference [2]