상대론적 고 에너지 중이온 충돌에서 제트입자와 관련된 **제동복사**

인하대학교 윤진희 교수님, 권민정 교수님

박가영

Motivation

- Bremsstrahlung is a major process losing energies while jet particles get through the medium.
- BUT it should be quite different from low energy potential scattering.

Motivation

- It is expected that in the high energy limit photons or gluons are emitted in the direction of the initial jet particles.
- Check the behavior of bremsstrahlung in relativistic heavy-ion collisions by calculating the cross section.

Model : Jet particle scattering in medium

C. Y. Wong, Phys. Rev. C 85, 064909 (2012)

Two diagrams interfere to give the constructive behavior in the forward direction which results in the ridge correlation.

Bremsstrahlung of jet particle in medium

Interference term may play an important role in this process and give the forward peak.

Bremsstrahlung of jet particles

Amplitude for the Process

Cross Section for the Process

$$d\sigma = \frac{1}{2(2\pi)^5} \frac{1}{v_p - \bar{v}} \frac{m_p}{p_0} \frac{m_a}{a_0} d\sigma'$$

$$d\sigma' = |M|^2 \delta(p'_0 + a'_0 + k_0 - p_0 - a_0) \frac{m_p}{p'_0} \frac{m_a dq_z d\mathbf{q}_T}{a'_0} \frac{d^3k}{k_0}$$

$$M = M_a + M_b$$

Add them first before square them and interference terms are expected to give the forward peak.

- Consider 5 particles \rightarrow 20 degrees of freedom
- on mass shell condition : 5
- Energy momentum conservation : 4
- Set the direction of initial jet & medium parton to z axis : $p_x = p_y = 0$ & $a_x = a_y = 0$

- Left 7 degrees of freedom : p_0 , p'_0 , $\theta_{p'}$, $\phi_{p'}$, k_0 , θ_k , ϕ_k

Using on mass-shell condition

&
$$p - p' - k = q = a' - a$$

- for initial medium

$$a_0^2 = a_3^2 + m_a^2$$

- for final medium

$$(a_0 + q_0)^2 = q_1^2 + q_2^2 + (a_3 + q_3)^2 + m_a^2$$

We have quadratic equation from two expression and solve it to get $a_0 \& a_{3.}$

Angular Distribution of Cross Section

- Check the angular distribution of the cross section.
- Check the correlation $\Delta \theta' = \theta_{p'} \theta_k \& \Delta \phi' = \phi_{p'} \phi_k$

^{2014.12.05 (}FRI) Heavy Ion Meeting

^{2014.12.05 (}FRI) Heavy Ion Meeting

^{2014.12.05 (}FRI) Heavy Ion Meeting

^{2014.12.05 (}FRI) Heavy Ion Meeting

Summary

- Calculate the cross section of bremsstrahlung for jet particles in medium after the relativistic high energy heavy ion collision.
 - At given incident energy and \boldsymbol{p}_{T}
- Show the angular distribution of cross section
 check the correlation between p' and k.

Outlook

- Need to include the momentum distribution of medium partons.
- Will check the correlation between medium parton a' and p' as a candidate process of the ridge correlation.

Motivation

- Bremsstrahlung is a major process losing energies while jet particles get through the medium.
- BUT it should be quite different from low energy potential scattering.

