

Hybrid Integrated Circuit Assembly system for the ITS upgrade in ALICE

Bong-Hwi Lim Pusan National University Heavy Ion Meeting 2014.12.06.

1

PNU Heavy Ion Meeting

Contents

ITS upgrade project in ALICE

HIC Assembly in ITS upgrade

Laser Soldering in HIC Assembly

Inner Tracking System (ITS) in ALICE Detector

ITS upgrade project

Heavy Ion Meeting PNU

Main goal of new ITS

- Increasing Impact parameter resolution by <u>factor 3</u>
 - First Detection layer close to the beam line
 - Current: 39mm \rightarrow New: 22mm
 - Reduction of material budget
 - X/X₀ / layer: Current: ~1.13% \rightarrow New: ~0.3% (for Inner layer)
 - High-resolution to reduce pixel detector size
 - Current: 50um x 425um \rightarrow New: 30um x 30um
- Faster Read out rate
 - Current: Maximum 1kHz
 → New: <u>50kHz for Pb-Pb, 400kHz for pp collision</u>

The ALICE Collaboration. Technical Design Report for the Upgrade of the ALICE Inner Tracking System. In J.Phys. G41 (2014) (870)/2() 5 / 27

PNU Heavy Ion Meeting

Bong-Hwi Lim

Overall structure of new ITS

2014.12.06.

6 / 27 PNU Heavy Ion Meeting Bo

Bong-Hwi Lim

Overall structure of new ITS

- Inner Barrel + Outer Barrel
 - Inner Barrel (IB)
 - 3 inner layer
 - Outer Barrel (OB)
 - 2 Middle layer + 2 Outer layer

Outer layer

Middle layer

Inner layer

PNU Heavy Ion Meeting

Hybrid Integrated Circuit

- Hybrid Integrated Circuit is most important part of the stave
- Flexible Printed Circuit + Pixel Chips (500,000 pixels per chip)

Pixel chips are soldered to FPC by <u>Laser soldering technique</u>

HIC Assembly in ITS upgrade

PNU Heavy Ion Meeting

10/27

Bong-Hwi Lim

Construction of Outer Barrel

- # of Stave for Outer Barrel
 - Middle layers: 24 + 30, length 843 mm
 - Outer layers: 42 + 48, length 1475 mm
- Main components of Stave
 - Space frame & Cold plate
 - Power bus

11/27

- HIC \rightarrow identical for Middle and Outer layers
- Amount of needed HIC
 - 2032 (including spare)
- HIC construction Sites
 - CERN, INFN (Italy), Strasbourg (France), <u>PNU+Inha (Korea)</u>
 - Up to 3 more sites, CCNU(China), LBNL(USA), Liverpool(England)

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

Chip placement Stack FPC & Soldering mask **Soldering ball placement Cover the lid Start Laser Soldering** Quality check by sensor system

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

Chip placement Stack FPC & Soldering mask **Soldering ball placement Cover the lid Start Laser Soldering** Quality check by sensor system

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

12/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

Laser Soldering for HIC Assembly

2014.12.06.

13/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

- Pixel chips are soldered to FPC by this technique
- It can avoid thermal stress on the full HIC Structure
 - The hit is only generated in the small local area of the size of connection pad

14/27

Procedure of Laser Soldering in R&D

- 1. Stack & Align the Chip, Flex and Soldering grid on the Vacuum Jig.
- 2. Put the Soldering ball into the hole of Soldering Grid
- 3. Cover the Vacuum Lid and Make the vacuum inside.
- 4. Start Laser Soldering with using Laser Profile

15/27

Laser Profile

16/27

- Laser Power is controlled by temperature set.
 - If Acquired Temperature (Surface Temp.) under Set Temp., Laser Power increasing
- Acquired temperature contains information of soldering process
- Optimal setting of Laser Profile should be found

Laser Soldering Data

1. Soldering Video:

~ check the change of appearance at soldering point

2. Measured Laser Power · Temperature:

~ measure the laser power and surface temperature during the soldering process

3. Cross-Section Picture:

~ check the condition of soldering point by cutting the sample

Soldering Video

17/27

Measured Laser Power&Temprature

Cross-Section Picture

PNU Heavy Ion Meeting

Bong-Hwi Lim

Laser Soldering Data

1. Soldering Video:

~ check the change of appearance at soldering point

2. Measured Laser Power · Temperature:

~ measure the laser power and surface temperature during the soldering process

3. Cross-Section Picture:

~ check the condition of soldering point by cutting the sample

Soldering Video

17/27

Measured Laser Power&Temprature

Cross-Section Picture

PNU Heavy Ion Meeting

Bong-Hwi Lim

Data analysis of Laser Soldering

• Goal

18/27

- Quality Assurance of Laser Soldering Quality with non-destructive method.
- Find optimal Laser Soldering Profile
- Available method
 - Check Laser Profile
 - ~ Laser Power, Acquired Temperature during soldering
 - Categorize connection shape from Soldering video
 - And more..

Available method #1: Laser Profile

Check Acquired Temperature

- This value is directly related in real soldering condition
- Laser Power is controlled by combination of Setted Temp. and Acquired Temp.
- Acquired Temp. Maxium
- Acquired Temp. Integration
- Acquired Temp. Shape(on going)

Available method #1: Laser Profile

Check Acquired Temperature

- This value is directly related in real soldering condition
- Laser Power is controlled by combination of Setted Temp. and Acquired Temp.
- Acquired Temp. Maxium
- Acquired Temp. Integration
- Acquired Temp. Shape(on going)

Available method #2: Categorize Connection Shape from Video

PNU Heavy Ion Meeting

Bong-Hwi Lim

Available method #2: Categorize Connection Shape from Video

PNU Heavy Ion Meeting

Bong-Hwi Lim

Preliminary Result #1: Laser Profile

A.Temp Integration tend to decrease by increasing PI

HIPEX Heavy Ion Physics Imperiment

PNU Heavy Ion Meeting

Bong-Hwi Lim

Preliminary Result #2: Laser Profile

A.Temp Max. vs A.Temp Integration

A.Temp Integration tend to follow A.Temp Max where A.Temp Max. is in below 360
Prepare for Assembly System in PNU

Baseline system for HIC Assembly

- including automatic placement system and Laser soldering machine
- will be delivered May.2015

New room for assembly

Available now

Clean booth for Assembly

- necessary for assembly silicon chips (clean room class ~ 100,000)
- will be installed just before the base -line system arrive

Clean booth for Assembly(Planed)

23/27

PNU Heavy Ion Meeting

Bong-Hwi Lim

2014.12.06.

Summary

- ITS upgrade project in ALICE
 - ALICE prepare the next ITS detector.
- HIC Assembly in ITS upgrade
 - HIC Module can be manufactured by distributed site.
 - PNU is one of Module Assembly site, and preparing the Module Assembly.
- Laser Soldering in HIC Assembly
 - Laser Soldering is most important part in HIC Assembly
 - R&D of Laser soldering is on going now.
 - Data analysis of laser soldering is also on going now.

PNU

Back up

PNU Heavy Ion Meeting

25/27

Bong-Hwi Lim

2014.12.06.

Outer Barrel Specification

- Outer Barrel: 2 Middle layer + 2 Outer layer
- Radial Position(mm) : **196**, **245**, **344**, **393**
- Length in z(mm) : 843, 1475
- # of Staves: 24, 30, 42, 48
 - # of half-Staves: 2
- # of moudules per half-stave: 4, 7
- # of Chips per module: 14
- # of Chips per layer: 2688, 3360, 8232, 9408

PNU

Amount of needed HIC

Layer	Stave	Half-stave	Module	Chip
L3	24	48	192	2688
L4	30	60	240	3360
L5	42	84	588	8232
L6	48	96	672	9408
Spares(20%)	11(ML) 18(OL)	22(ML) 36(OL)	340	4760
Total	65(ML) 108(OL)	130(ML) 216(OL)	2032	28448

Half-Stave Left

27/27

Each site would manufacture the 1 module per day for 1 ~ 2 years

PNU Heavy Ion Meeting Bong-Hwi Lim