

PNU RICH Detector

R&D STATUS

Pusan National University

Kwangyoung Kim*, Kunsu Oh, KyungEon Choi Jongsik Eum, Sanguk Won, Jihye Song, Jiyoung Kim, Bong-Hwi Lim, In-Kwon Yoo

Contents

- Motivation
- Concept of PNU RICH v.2.5
- Previous results & Beam Test @PAL
- Analysis using time difference
- Summary and Outlook

Motivation

Introduction to CBM RICH

- CBM interested in QCD phase diagram (deconfinement & chiral PT.)
- **Prototype of RICH detector** is developed in PNU
- RICH detector for **electron ID** (J/ Ψ , ρ mesons decay to e+ e-)
- Au+Au collision from **2-45 GeV** in 2016

Motivation

Cherenkov radiation

 Charged particles travelling in medium(n>1)

+ velocity of particles(v>c/n) $\cos \theta_c = \frac{1}{\beta n}$

- \rightarrow Cherenkov radiation
- Emission of photon by varying dipole momentum

 $\frac{d^2 N}{dEdl} = \frac{\alpha z^2}{\bar{h}c} \sin^2 \theta_c$ z : electric charge in units of e $\alpha = \frac{e^2}{\bar{h}c}$ 4

Motivation

5

• Ring Imaging CHerenkov Detector

- Particle ID is possible by measuring a radius of ring
- Radius is given by (small angle approximation)

$$r = F \tan \theta_c \sim \frac{R}{2} \sqrt{2 - \frac{2}{n} \sqrt{1 + \frac{(mc)^2}{p^2}}}$$

Concept of PNU RICH2.5

Prototype concept

• RICH detector is consist of 3 parts : Radiator, Mirror, MAPMT

Parameter	PNU-RICH2.5	
Radiator length	1.76 m	
Radiator	N2, CO2	
Curvature	3.2 m	
Reflexibility	>85% (λ>200 nm)	
Ring radius(60MeV)	36.61mm, 45.96	

	다중채널광전자증배관			
	H8500C[13]	H8500C-	R11265-103-	PLANACON[14
		03[13]	M16[15]	
증폭방법	다이노드	다이노드	다이노드	MCP
픽셀 배열	8×8	8×8	4×4	8×8
파장 반응	300 - 650 nm	185 - 650 nm	200 - 650 nm	200 - 650 nm
입사창 재질	보로실리케이	자외선유리	자외선유리	용융석영
	트유리	(UV glass)	(UV glass)	유리(Fused
	(Brosilicate			silica glass)
	glass)			
광음극	BA	BA	SBA	BA
From J.S Eum's thesis				

Previous Results

Simulation for PNU RICH(Integrated events)

60MeV

400MeV

Experiment @PAL (Integrated events)

- To get high resolution is impossible by inte.
- \rightarrow To select single event(1 electron) is needed
- \rightarrow But # of electron ~10¹⁰ in 1 bunch of beam
- \rightarrow Using a **time difference** to reduce # of electron

Beam test @ PAL

Setup of PNU RICH2.5

- DITTO, VETO trigger are coincidence to count beam
- Size of beam is about $5.5*7cm^2 \rightarrow$ Collimator is needed

Beam test @ PAL

Dataset(CO₂)

Run	Dipole(A)	Mirror
Focus	13.7	5°
Half	13.7	half
Unfocus	14.3	0°

Position of mirror

- Focus = Background + Cherenkov, UnFocus = Background only
- Dipole current change the energy of electron beam
 - 13.7A ->32.6 MeV , 14.3A ->34.0 MeV
- The reason using ~30MeV beam is to reduce trigger rate

- Time difference
 - Time difference = coincidence time (t_c) MAPMT hits (t_p)

- Single t_c has ~816 time difference in interval -8000 ~ 8000 ns
- \rightarrow ~816 MAPMT hits each $t_c \parallel \parallel$
- → select **narrow interval** of time

difference

How to separate intervals of time difference

- These distribution is separated by 47 intervals(all peak)
- Size of Intervals are about 40~90 ns
- ADC distribution is normalized by total # of coincident time(t_c)

Background dominant interval(pedestal only)

Background dominant interval(unfocus>focus)

Signal Dominant interval(focus>half>unfocus)

Summary & Outlook

- Summary(case of CO₂)
 - In ~32MeV we have to use time difference
 - Signal dominant interval is (-160,-130)ns
 - Cherenkov ring will be **statistically** found
 - Result of N2 don't agree with our approach -> more studying

Outlook

- Fit Quality cut makes the results more meaningful
- Cross-check about N2 & look the ring directly over hundred MeV
- \rightarrow Confirm the operation of PNU RICH Detector !

Back up

Time difference window

Heavy Ion Physics Experimen

