Overview of QM2014: Experimental Data in pA and dA

All materials are from the following presentations in QM2014 <u>http://qm2014.gsi.de/</u>

> Thursday morning: Anne SICKLES Monday afternoon: Li YI, Sanghoon Lim

why p+A collisions?

initial nuclei hot nuclear matter

hot nuclear matter created from initial nuclei

hard probe rates

hard probe rates nearly unmodified from Ncoll scaling both in d+Au and p+Pb at midrapidity

Non-single diffractive events

Elastic

Single diffractive

Double diffractive

- Diffractive reaction in particle physics: Exchange of pomeron that has the quantum numbers of vacuum leaving a large "rapidity gap"
- ALICE definition of SD: Diffracted mass $M_X < 200 \text{ GeV/c}^2$ (non-diffractive protons escape the detector acceptance) with a large rapidity gap
 - DD: NSD with $\Delta \eta > 3$
- Experimental definition
 - SD-like: Only one side of the detector is active
 - NSD-like: Both sides of the detector are active
 - Normalizing the data to specific event class such as non-single diffractive or inelastic collisions: input for the model calculations to determine the number of binary collisions

jets...new this Quark Matter

same conclusion from reconstructed jets at the LHC

Perepelitsa, Appelt, Aiola

charged particles...more interesting

- different impressions between CMS/ATLAS & ALICE data
- big caveat: no pp reference at 5TeV (will be wanted for HI reference anyway)!
 - much of the difference ALICE/CMS difference is in the reference (see E. Appelt (CMS))

•

charged particles...more interesting

- different impressions between CMS/ATLAS & ALICE data
- big caveat: no pp reference at 5TeV (will be wanted for HI reference anyway)!

٠

•

much of the difference ALICE/CMS difference is in the reference (see E. Appelt (CMS))

and centrality dependence?

moving down in p_T

enhanced protons

9

where are the enhanced baryons from?

extra baryons don't seem to be in the jets...

low p_T spectra

reasonably good description at RHIC and the LHC

central d+Au: simultaneous fit to π , K, p $<\beta>=0.46$ $T_{fphys: Rev 2000}$ Andrei

what about heavy mesons?

expectations from Blast Wave for heavy mesons in d+Au

data: PHENIX PRL 109 242301 AMS: PLB 731 51 (2014)

In d+Au collisions

PH^{*}ENIX

PHENIX heavy-flavor electron results Sanghoon Lim

XXIV

QUARK MATTER

In d+Au collisions

PHENIX heavy-flavor electron results Sanghoon Lim

PH^{*}ENIX

XXI

QUARK MATTER

Rapidity expansion in d+Au

Rapidity expansion in d+Au

Fail to reproduce the data at both rapidity simultaneously w/ combinations of initial-state effects!

Sanghoon Lim

- modification of nPDF
- initial k_T broadening

PH

Enhancement in central d+Au

PHENIX heavy-flavor electron results Sanghoon Lim

PH

6

UARK MATTER

Hydrodynamic behavior?

PHENIX heavy-flavor electron results Sanghoon Lim

PH^{*}ENIX

In Cu+Cu collisions

In Cu+Cu collisions

what about heavy mesons?

a smaller effect at the LHC could be due to the harder initial spectrum

 $\begin{array}{c} \mathbf{O} \\ \mathbf{$

away from midrapidity

p-going

Pb-going

similar results from ALICE, perhaps slightly smaller A-going enhancement

S. Li

- many features of identified particles at moderate and low p_T spectra are suggestive of what has been observed in A+A collisions at both RHIC and the LHC
- how are these particles correlated with each other?

Ridge in p+p, p+Pb at LHC

- Ridge observed in high-multiplicity pp and pPb events
- High-multi. low-multi. (for jets) \rightarrow double ridge in pPb

Ridge in d+Au at RHIC?

PHENIX d+Au Double Ridge

• CGC?

2014 May

STAR

TPC-TPC $\Delta \phi$ Correlations High- vs Low-mult

d+Au@200 GeV

p_T: [1,3]x[1,3] GeV/*c* FTPC Multiplicity

- high-mult. (cent.) > low-mult. (peri.) on both near-side and away-side.
- central peripheral = "double ridge"

Near-side Ridge in High-multiplicity

d+Au@200 GeV

p_τ: [1,3]x[1,3] GeV/*c* FTPC Multiplicity

- Finite pedestal → Near-side Ridge
- Different jet shapes and yields between cent. and peri.
 - \rightarrow Multiplicity selection bias? Jet energy, fragmentation?

Away-side Ridge?

d+Au@200 GeV

 Cent. - peri. ≠ Cent. - Jets residual of jets p_τ: [1,3]x[1,3] GeV/c FTPC Multiplicity

Away-side Ridge?

d+Au@200 GeV

 Cent. - peri. ≠ Cent. - Jets residual of jets p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

 $|\Delta\eta|$ used in PHENIX's paper Same near-side and away-side PRL 111 (2013) 212301

No Away-side Ridge

d+Au@200 GeV

Do first-order correction: same jet yield

Assume:

- Peri. correlation has jets only.
- Away-side jet yield ∞ near-side jet yield

 $Y^{Cent.}$, $Y^{Peri.}$: near-side jet yields $R = Y^{Cent.} / Y^{Peri.} = 1.29\pm0.05$ (Away-side ratio: 1.32±0.02) Cent. - R×Peri≈ Cent. - Jets

p₁: [1,3]x[1,3] GeV/c

near-side jet shapes difference

• Away-side ~ 0 \rightarrow No Double Ridge in d+Au@200GeV

STAR 2014 May

TPC-TPC $\Delta \phi$ Correlations High- vs Low-mult.

d+Au@200 GeV

p_T: [1,3]x[1,3] GeV/*c* FTPC Multiplicity

- Near-side: finite at $\Delta \eta \approx 1.5$
 - → How about even larger $|\Delta \eta| \approx 3$?

TPC-FTPC: High-. vs Low-multiplicity

d+Au@200 GeV

р_т: [1,3]x[1,3] GeV/*c* ZDC Energy

- Away-side: enhanced at Au-going side; depleted at d-side.
- Near-side: finite for FTPC Au-going side ($\Delta \eta \approx 3$) in highmultiplicity collisions.

Recap: Near-side in High-multiplicity

- Long-range near-side correlations are observed in both TPC-TPC and TPC-FTPC
- What could be the the physics mechanism?
- Study charge combinations

Unlike-sign vs Like-sign

- $\Delta\eta \approx$ 1.5 near-side: unlike-sign > like-sign
 - → Jet-like feature?
- $\Delta \eta \approx$ -3: No difference.

Associated Particle: Positive vs Negative

- $\Delta \eta \approx$ 1.5: No difference.
- $\Delta\eta \approx$ -3 near-side: positive associated particles only
 - → Transport protons?

- Jets yield and shape difference observed in low- and highmultiplicity d+Au@200 GeV
- Away-side ~ 0 after jet difference corrected No double ridge
- Finite near-side long-range correlations Ridge observed by STAR.
 - $\Delta\eta \sim$ 1.5 : unlike-sign > like-sign \rightarrow jet-like?
 - $\Delta \eta \sim$ -3: from positive associated particle only \rightarrow transport protons?
- The near-side ridge may be due to physics mechanism other than flow. STAR does not observe elliptic flow in d+Au.

Summary

angular correlations

QM2014: wealth of new measurements vigorous discussion about methods & interpretation focus on methods, p_T reach, particle ID

> CMS PLB 718 795 (2013) ALICE PLB 719 29 ATLAS PRL 110 182302 17

cumulants

PbPb

pPb

v2 from cumulants smaller than 2-particle correlations no change in v2 for 4,6,8 part. cumulants

mass dependent flow

0.25 0-5% d+Au 200 GeV pion proton 0.20 0.15 ~~~ 0.10 0.05 PHENIX: 1404.7461 ^{1.5} ^{2.0} p₊ (GeV/c) 0.5 2.5 0.0 3.0 3.5 1.0

mass differences seen: lower v_2 for heavier particles at low p_T , crossing at higher p_T

Milano, Huang, Sharma

mass dependent flow

MC Glauber IC $\eta/s = 1/4\pi$ $\tau_0 = 0.5 \text{ fm/c}$ $T_f = 170 \text{MeV}$ cascade calculations: P. Romatschke

what can we learn by the successes and failures of hydro calculations in these very small systems?

Huang, Milano

³He+Au:

calculations: P. Romatschke (CD parallel), Nagle et al: 1312.4565

linking geometry to correlations?

looking forward to p+Au and 3He+Au measurements at RHIC in the next year

in addition to new collision systems, detector upgrades to both STAR & PHENIX will provide big improvements on existing d+Au measurements (silicon, MTD, MPC-EX)