

Experimental Data on

Open Heavy Flavour and Quarkonia

MinJung Kweon Inha University HIM June 20, 2014

p_{_}[GeV/c]

000246810 p_T[GeV/c]

STAR

000246810 p_T[GeV/c]

Latest from experiments on Quarkonia

A Andronic@GSL de STAR Suppression of Υ Production in d+Au and Au+Au Collisions at $\sqrt{s_{\rm NN}}=200$ GeV arXiv:1312.3675 PHENIX Measurement of $\Upsilon(1S+2S+3S)$ production in p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV <u>arXiv:1404.2246</u> Nuclear matter effects on J/ ψ production in asymmetric Cu+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV <u>arXiv:1404.1873</u> Nuclear modification of ψ' , χ_c and J/ ψ production in d+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV <u>arXiv:1305.5516</u> \mathbf{CMS} Event activity dependence of $\Upsilon(nS)$ production in $\sqrt{s_{NN}} = 5.02$ TeV pPb and $\sqrt{s} = 2.76$ TeV pp collisions <u>arXiv:1312.6300</u> ALICE Suppression of $\Upsilon(1S)$ production at forward rapidity in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV <u>arXiv:1405.4493</u> Suppression of $\psi(2S)$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV <u>arXiv:1405.3796</u> $\label{eq:centrality} Centrality, rapidity and transverse momentum dependence of J/\psi suppression in Pb-Pb collisions at <math>\sqrt{s_{\rm NN}} = 2.76$ TeV arXiv:1311.0214 J/ψ production and nuclear effects in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV <u>arXiv:1308.6726</u> J/ψ elliptic flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV <u>arXiv:1303.5880</u> LHCb Study of Υ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}} = 5 \text{ TeV} \text{ arXiv: 1405.5152}$ Study of J/ ψ production and cold nuclear effects in pPb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV arXiv:1308.6729

27

MinJung Kweon, Inha University June 20th 2014, HIM

 10^{4}

poster: E.Leogrande

Goal: study IAA for heavy-flavours

p_T[GeV/c]

STAR

000246810 p_T[GeV/c]

STAR

000246810 p_T[GeV/c]

د 0.3	ALICE	s _{NIN} = 2.76				Pro	mpt D ^c	, D ⁰	
0.25	Pb-Pb,		6 TeV				iyi<0.8		
0.2									
0.15									
0.1						EP TR	ъс		
0.05	2 <p_<3 c<br="" gev="">3<p_<4 c<="" gev="" td=""></p_<4></p_<3>								
0	Sut from B	feed-down pot	ebourn			4⊲	oʻ ₇ <6 G	ieV/c	
0	5	10 15	20	25	30	35	40 Cent	45 trality	50
							0011	anty	(,,,)

ALICE D ⁰ ,D ⁺ , D ⁺ average ANX, PD-PD, 1	T = 2.76 TeV	22 	₽°D ^{®,} D ^{®,} D ^{®,} D ^{®,} Navage.d#!<9150.5	ALICE Preliminary	·····
Syst. from B feed-down		HQ production	Medium Modeling	Heavy quarks interactions	Hadronization
0.2 V ₂ , 3(WHDG (AIP Conf Proc. 1441 (2012) 889	FONLL, no shadowing	Glauber model collision geometry, no hydro evolution	radiative + collisional energy loss	fragmentation
0.1 running a, x=0.2, X=0.2 running a, x=0.2, orly 2=-2, K=3.5 0-7.5% (ALICE)	POWLANG (J. Phys. G 38 (2011) 124144)	POWEG (NLO) + EPS09 shadowing	2+1d expanding medium with viscos hydro evolution	HQ transport (Langevin) + collisional energy loss	fragmentation
8 Pb+Pb, \s = 2.76 TeV b = 3.6 fm, y < 0.5 6 4	Cao, Quin, Bass (Phys Rev C 88 (2013) 044907)	LO pQCD + EPS09 shadowing	2+1d expanding medium with viscous hydro evolution	HQ transport (Langevin) + quasi elastic scattering + radiative energy loss	recombination fragmentation
2 0 0 5 10 15 20 25 30 35 p _T [GeV]	MC@sHQ+EPOS2 (Phys Rev C 89 (2014) 014905)	FONLL, no shadowing	3+1d fluid dynamical expansion (EPOS)	HQ transport (Boltzmann) + radiative + collisional energy loss.	recombination fragmentation
5 running a _p , x-0.2, X-0.2 running a _p , x-0.2, A-0.2 30-60% (ALICE) 31-1 1	BAMPS (Phys Lett B 717 (2012) 430)	MC@NLO, no shadowing	3+1d fully dynamic parton transport model	HQ transport (Boltzmann) + collisional energy loss (w/ & w/o radiative)	fragmentation
2 1 0 P0-PD 39-270 TeV b - 9.7 Im	TAMU elastic (arXiv:1401.3817)	FONLL + EPS09 shadowing	transport + 3+1d ideal hydro evolution	HQ transport (Langevin) + collisional energy loss + diffusion in <u>hadronic</u> phase	recombination fragmentation
0 2 4 6 8 10 12 14 16 Pr/GeVI	UrOMD (arXiv:1211.6912)	PYTHIA, no shadowing	3+1d ideal hydro evolution	HQ transport (Langevin) + collisional energy loss	recombination - fragmentation
978EL-77100	p _T (GeV/a	c) c) $\frac{1}{4}$ all-prel-77088	Sur	nmarized by Da	vide Caffa
FAMU elastic: arXiv:1401.3817 Djordjevic: arXiv:1307.4098 Cao, Qin, Bass: PRC 88 (2013) WHDG rad+coll: Nucl. Phys. A 8	044907 872 (2011) 265 👺	MC@sHQ+EPOS: PF Vitev, rad+dissoc: PR POWLANG: JPG 38 (BAMPS: PLB 717 (20	AC 89 (2014) 014905 C 80 (2009) 054902 2011) 124144 Vario (12) 430	us observable traints for the	es provid models

- 0.5 Global sys. = $\pm 10.1 \%$ (b) 3.0 < p_T [GeV/c] < 5.0

