- Jets & low-mass dilepton results In-Kwon YOO Pusan National University

Outline

- Dilepton Results
- Jet Results

Dilepton Results

Penetrating probe of the hot, dense medium

Low mass dileptons $(M_{\parallel} < 1.1 \text{ GeV/c}^2)$ (Spectrum and v _n versus M_{\parallel} , p _T)	vector meson in-medium modifications, link to Chiral Symmetry Restoration
Intermediate mass dileptons (1.1 <m<sub>II<3.0 GeV/c²) (Spectrum and v_n versus M_{II}, p_T)</m<sub>	QGP thermal radiation, charm correlation modification.
Thermal photons (p_T <4 GeV/c) (p_T spectrum and v_n)	QGP thermal radiation, hadron gas thermal radiation

Energy and centrality dependence \rightarrow Constrain T₀, t₀, lifetime, and density profile ...

Dilepton sources

ρ γ *

from the QGP via partonic (q,qbar, g) interactions:

! Advantage of dileptons:

additional "degree of freedom" (M) allows to disentangle various sources

Experiment	dilepton	direct photon	S/B, purity, acceptance*
PHENIX	dielectron	internal and external conversion p _T >0.4 GeV/c	1/300, 70% in central, p _T >0.2 GeV/c, η <0.35
STAR	dielectron	internal conversion p _T >1 GeV/c	1/250, 93% in central, p _T >0.2 GeV/c, η <1
ALICE	dielectron	external conversion p _T >1 GeV/c	3-4%in p+p, 1.5-2% in p+Pb, 99% in p+p, 93% in Pb+Pb p _T >0.2 GeV/c, η <0.8
NA60	dimuon		1/7 for <s b=""> in the whole mass region in In+In collisions without centrality cut.</s>

*S/B for inclusive dileptons at M_{\parallel} =0.5 GeV/c², purity and acceptance for electrons.

For HADES results, see T. Galatyuk for details.

Dielectron measurements in p+p collisions

Charm correlation contribution increases from RHIC to LHC at 0.4<M_{ee}<0.5 GeV/c².

The cocktail simulation with expected hadronic contributions, is consistent with data in p+p collisions.

Dielectron measurements in d+Au collisions

Hadronic cocktail is consistent with data in d+Au collisions.

Obtained bbbar cross section per NN at 200 GeV: σ_{bbbar} = 3.4 ± 0.28 ± 0.46 µb.

Dielectron measurements in p+Pb collisions

ALICE: M. Kohler

Hadronic cocktail is consistent with data in p+Pb collisions. There is no medium radiation observed in p(d)+A collisions.

Energy dependence of di-electron spectra

STAR results: systematically study the di-electron continuum from 19.6, 27, 39, 62.4 and 200 GeV.

Low mass excess is observed for all the energies.

STAR: P. Huck, C. Yang, J. Butterworth, Y. Guo

Excess di-electron spectra

Excess dielectron mass spectrum in the mass region 0.3-0.76 GeV/c² in 200 GeV Au+Au collisions follows Npart^{1.54 \pm 0.18 dependence.}

Energy dependence of di-electron spectra

Dileptons from RHIC BES: STAR

(Talk by Nu Xu at QM'2014)

Message:

• **BES-STAR data** show a **constant low mass excess** (scaled with $N(\pi^0)$) within the measured energy range

- PHSD model: excess increasing with decreasing energy due to a longer ρ-propagation in the high baryon density phase
- Good perspectives for future experiments CBM(FAIR) / MPD(NICA)

Towards intermediate mass region

Need independent measurements (e.g. e-muon) of the charm correlation contribution to dilepton continuum in order to access the possible signature of QGP thermal radiation.

e-muon correlation with the Muon Telescope Detector in 2014.

e-muon correlation

e-muon (mid-forward rapidity) correlations in d+Au and p+p collisions at 200 GeV.

How to connect this mid-forward e-muon correlation to mid-rapidity dilepton physics, need further investigation.

Direct photon spectra and elliptic flow v₂ at QM2012

- Low p_T direct photon elliptic flow measurement could provide direct constraints on QGP dynamics (η /s, T, t₀...).
- Excess of direct photon yield over p+p: T_{eff} =221 ± 19 ± 19 MeV in 0-20% Au+Au;

substantial positive v_2 observed at $p_T < 4$ GeV/c.

IONAL LABORATO

• Excess of direct photon yield over p+p at $p_T < 4$ GeV/c: $T_{eff} = 304 \pm 51$ MeV in 0-40% Pb+Pb.

Direct soft photon spectra from PHENIX

- Direct photon spectrum down to 0.4 GeV/c: T_{eff} from the excess p_T spectrum, has no centrality dependence.
- The excess follows Npart^{$1.48 \pm 0.08 \pm 0.04$} dependence.

Jet Results

Charged particle R_{pPb} (QM2014)

Charged particle R_{DPb}

Excellent agreement between ATLAS and CMS.

Discrepancy between ALICE and (ATLAS+CMS)

Eric AppletPetr E(CMS 5/20)(ATLAS)

Petr Balek (ATLAS 5/20)

Jan Fiete Grosse-Oetringhaus (ALICE 5/22)

Jet R_{AA} in PbPb collisions at LHC

It would be nice to have low p_T CMS data / ATLAS R_{AA} with R=0.2 / ALICE high p_T data

Flavor Dependence of Jet Quenching

Indication of $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$ at low p_T

(However, spectra slope are different)

Indication of $R_{AA}(b-jet) \sim R_{AA}(all jets)$ at high jet p_T

