Quarkonia production in heavy-ion collisions in CMS

Songkyo Lee (Korea University) for the CMS collaboration

Heavy Ion Meeting 2013-12 Andong National University, Andong, Republic of Korea, 7th December 2013

Introduction

Motivation, CMS Detector

Charmonia in PbPb collisions

- Prompt J/ψ : R_{AA}
- Prompt J/ψ : azimuthal anisotropy

Bottomonia in PbPb & pPb collisions

Y(1S), Y(2S) and Y(3S)

Summary

Motivation

Quarkonia

- Bound states of heavy quark and antiquark
- Large mass requires a large momentum transfer only during the early stage of the collisions.
- \Rightarrow Powerful tool to probe QGP

Debye screening

- Loosely bound states (with smaller binding energies) melt at lower temperature.
- Sequential melting of the quarkonia
- \Rightarrow Thermometer of QGP

Resonance	J/ψ	Ψ	Υ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

Mocsy, EPJC 61 (2009) 705

T. Matsui & H. Satz, PLB 178 (1986) 416

CMS Detector

Muon Reconstruction

Excellent muon Identification and triggering in the muon system
 Outstanding momentum and vertex resolution of the tracking system

Dimuons in PbPb @ 2.76 TeV

7th December 2013

Heavy lon meeting 2013-12

${}^{\odot}$ Separation of prompt J/ ψ and non-prompt J/ ψ

• 2-Dimentional simultaneous fit for $m_{\mu\mu} \& \ell_{J/\psi}$

7th December 2013

Heavy lon meeting 2013-12

Prompt J/ ψ R_{AA}

• Nuclear modification factor

CMS-PAS HIN-12-014

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}}{N_{pp}} \cdot \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}} : R_{AA} = 1 \text{ No modification compared to pp collisions}$$

Suppressed by factor ~5 in the most central bin

• No p_T and y dependent suppression is observed.

J/ψ Azimuthal Anisotropy

CMS-PAS HIN-12-001

Elliptic flow (v₂)

Important to understand the dynamics of heavy-ion collision

- \rightarrow Asymmetry in the collective expansion
- \rightarrow Path-length dependent absorption
- Reflected in the azimuthal distribution of particle yields

7th December 2013

Prompt J/ψ v₂

CMS-PAS HIN-12-001

• No strong centrality, p_T , and rapidity dependence

■ Integrated v₂ value (10–60%, 6.5 < p_T < 30 GeV/c, |y| < 2.4)

 $v_2 = 0.054 \pm 0.013(stat.) \pm 0.006(syst.)$

'First' significant measurement of prompt $J/\psi v_2$

Comparison with other hadrons

CMS-PAS HIN-12-001

JHEP 1209 (2012) 112

• J/ ψ v₂ at lower p_T region is much smaller than hadron v₂ while higher p_T region shows similar v₂ values.

 ${}^{\odot}$ D meson v_2 has similar trend to hadron rather than J/ $\psi.$

Y(nS) in PbPb

In PbPb, Excited states are suppressed relative to the ground state.
The peak for Y(3S) is hardly visible.

R_{AA} for Y(nS)

Centrality integrated results

- $R_{AA}(Y(1S)) = 0.56 \pm 0.08 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$ $R_{AA}(Y(2S)) = 0.12 \pm 0.04 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$
- $R_{AA}(Y(3S)) = 0.03 \pm 0.04 \text{ (stat.)} \pm 0.01 \text{ (syst.)}$

```
(< 0.10 at 95% CL)
```

• Y states are suppressed sequentially.

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}[\Upsilon(1\mathsf{S})] > \mathsf{R}_{\mathsf{A}\mathsf{A}}[\Upsilon(2\mathsf{S})] > \mathsf{R}_{\mathsf{A}\mathsf{A}}[\Upsilon(3\mathsf{S})]$

PRL 109 (2012) 222301

CMS-PAS HIN-12-014

7th December 2013

pPb collisions

Cold nuclear matter effects in pPb

- Initial state energy loss, comover break up, shadowing, etc.
- provide a better understanding of the effects from QGP
- CNM itself is a interesting matter.

Ist pPb run @ LHC in Jan.-Feb. 2013

- $\sqrt{S_{NN}} = 5.02 \text{ TeV}$
- Recorded luminosity by CMS : 31.7 nb⁻¹

Y(nS) in pPb from 2013

- Limited kinematic range($|y_{CM}| < 1.93$) due to the rapidity shift in the asymmetric p+Pb collisions
- Fitting procedure is same in pp, pPb, and PbPb analysis.

Double & Single ratios

- **pPb vs pp** : Excited states are suppressed more than the ground state in pPb compared to pp.
- PbPb vs pPb: Additional final state effects in PbPb that affect the excited states more than the ground state.

Event activity variables

- Single ratios in all cases show the weaker dependence on E_{T} .
- In pp and pPb, the significant decreasing dependence on N_{tracks}.
 - Y would affect the multiplicity ?
 - Multiplicity would affect the Y?

Summary

Charmonia in PbPb collisions

- prompt J/ ψ is suppressed by factor 5 in the most central bin.
- Significant anisotropy of prompt J/ ψ in 10–60%, 6.5 < p_T < 30 GeV/c, |y| < 2.4

Bottomonia in PbPb & pPb collisions

- Sequential melting of $\Upsilon(nS)$ is observed in <u>PbPb</u>.
- Indication for the cold nuclear matter effect in <u>pPb</u>.

BACK-UP

7th December 2013

Heavy lon meeting 2013-12

pp, pPb, PbPb run at LHC & CMS

• 1st PbPb run @ $\sqrt{S_{NN}} = 2.76 \text{ TeV}$

- Nov. Dec. 2010
- Recorded luminosity by CMS : 7.28 µb⁻¹

Ist pp run @ √S_{NN} = 2.76 TeV

- March 2011
- Recorded luminosity by CMS : 225 nb⁻¹

Our Solution ■ 2nd PbPb run @ √SNN = 2.76 TeV Our Solution ■ 2.76 Our Solution ■ 2.776 Our Solution ■ 2.776 O

Nov. – Dec. 2011

Recorded luminosity by CMS : 150 µb⁻¹

• pPb run @ √S_{NN} = 5.02 TeV

Jan. - Feb. 2013

Recorded luminosity by CMS : 31.7 nb⁻¹

Our Solution ■ 2.76 TeV Our Solution ■ 2.76 TeV

- Feb. 2013 (3 days)
- Recorded luminosity by CMS : 5.41 pb⁻¹

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

Sequential melting scenario

Cartoon for Debye screening

- The larger the binding energy, the higher the dissociation temperature T_d.
- As temperature goes up, Debye length $r_{\lambda}(T)$ decreases.

Non-prompt $J/\psi R_{AA}$

CMS-PAS HIN-12-014

Suppressed by factor ~3 in the most central bin

• Hints of smaller suppression at lower p_T region, mid-rapidity region

Information on the b-quark energy loss in medium

Prompt J/ ψ R_{AA}

 \square

p_T dependence

♦ 6.5<p_<30 GeV/c</p>

<mark>∔</mark> 3<p₋<6.5 GeV/c

250

300

350

400

Rapidity dependence

- Left : No strong dependence on rapidity at high p_T region
- Right : At forward rapidity region, lower $p_T J/\psi$ is slightly less suppressed in the most central bins.

Non-prompt J/ψ R_{AA}

 \square

p_T dependence

Rapidity dependence

- Left : In all rapidity bins at high p_T region, centrality dependent suppression is shown.
- **Right** : In the forward region, lower $p_T J/\psi$ has strong centrality dependence and less suppressed than high $p_T J/\psi$.

400

ψ(2S) Single ratio

7th December 2013

Heavy lon meeting 2013-12

$\psi(2S)$ Double ratio & R_{AA}

Centrality integrated results

 $\begin{aligned} R_{AA}^{0-100\%}(\psi(2S)) &= 1.54 \pm 0.32(\text{stat}) \pm 0.22(\text{syst}) \pm 0.76(\text{pp}) \\ R_{AA}^{0-100\%}(\psi(2S)) &= 0.11 \pm 0.03(\text{stat}) \pm 0.02(\text{syst}) \pm 0.02(\text{pp}) \end{aligned}$ limited by pp statistics

Y(nS) Double ratio in PbPb

- Y(2S) double ratio vs centrality
 - No strong centrality dependence
 - Suppressed even in the most peripheral bin

$$rac{N_{\Upsilon(2\mathrm{S})}/N_{\Upsilon(1\mathrm{S})}|_{\mathrm{PbPb}}}{N_{\Upsilon(2\mathrm{S})}/N_{\Upsilon(1\mathrm{S})}|_{\mathrm{pp}}} = 0.21 \pm 0.07 \mathrm{(stat.)} \pm 0.02 \mathrm{(syst.)}$$

- Y(3S) double ratio vs centrality
- Peak at PbPb is hard to distinguish.
 → Set the upper limit

$$\frac{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} = 0.06 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.}) \\< 0.17 \text{ at } 95\% \text{ C.L.}$$

- Since the beam energy of proton and Pb nucleus is asymmetric, C.M frame is boosted by $\Delta y \sim 0.47$ w.r.t. lab frame.
- Symmetric range in C.M.frame [-1.93, 1.93] is selected for muon's η and dimuon's rapidity.
 - : for the 1st run (proton going to –) : [–2.4, 1.47]
 - : for the 2nd run (proton going to +) : [-1.47, 2.4]
- Binning in 2 event activity variables
 - : corrected N_{tracks} in inner tracker ($|\eta| < 2.4$, p_T>0.4 GeV/c)
 - : raw transverse energy(E_T) measured in HF (4<| η |<5.2)

