Future ALICE Physics Perspectives and ALICE GEM-TPC upgrade <u>Taku Gunji</u> Center for Nuclear Study The University of Tokyo

<u>Outline</u>

- Heavy ion physics at LHC energy
- Current status of ALICE
- Experimental results (inputs for the upgrade)
- ALICE upgrade plans
- Physics perspectives
- GEM-TPC upgrades
- Summary and Outlook

Heavy Ion Physics at LHC Energy

• To fully exploit scientific potential of the LHC - unique in

- Large cross sections for hard probes
- High initial temperature/long space-time evolution
 - Observables are more sensitive to the properties of QGP
- Gluon saturation
 - less complexity in initial conditions???
- Strongest (Color) EM field shortly after the collisions
 - Key to understand the dynamics just after the collisions
- Collectivity in high multiplicity p-p and p-Pb collisions?

• Precision measurement of the QGP parameters at $\mu_b=0$

- Quantitative study of QGP in conjunction with RHIC
- Experiments need to have the capability to measure:
 - Soft probes(PID flow & spectra, correlation)/EM probes (ALICE)
 - Hard probes through jets (ATLAS/CMS and ALICE)

Detector Performance

- Particle Identification (pi/K/P/e/mu) for wide p_T region
- Efficient low-momentum tracking down to \sim 100MeV/c
- Excellent vertexing capability
- Low material budget (10% of X₀)
- good reconstruction capability of photon conversions

Experimental results (motivate the ALICE upgrades)

- 1. Higher order Flow
- 2. Event-by-event flow
- 3. Heavy flavor measurements
- 4. jets
- 5. Photon puzzle
- 6. Dielectron puzzle and thermal dilepton measurement

Higher Order Flow

5

- Higher order Flow measurements
 - Initial conditions (correlation length, fluctuation), Viscosity

0.35

Pb-Pb 2.76 TeV, 0-2% central

n

Centrality

Higher Order Flow

- Higher order Flow measurements
 - IP-Glasma model (1/Q_s)
 - η/s=0.12(RHIC), 0.2(LHC)
 - $v_n \propto \exp(-\beta n^2)$, $\beta \propto \eta/s$
- Temperature dependence of η/s???
 - Sensitivity to QGP η /s or hadronics η /s??? Can differentiate???

<u>E-by-E Flow</u>

- Event-by-event flow
 - Better understanding of initial conditions
 - Central: MC-KLN, IP-Glasma
 - Peripheral: MC-Glauber, IP-Glasma

• Firm conclusion??? Another cross-check???

1.5

 $v_2/\langle v_2 \rangle, \epsilon_2/\langle \epsilon_2 \rangle$

2.5

<u>Heavy Quarks</u>

- Heavy flavors
 - Strong suppression like other hadrons. Hint of $R_{AA}(B) > R_{AA}(D)$
- More precision measurements needed!
 - Separation of D/B. Flow of heavy quarks (D, B). v_n measurements
 - Low p_T HQ R_{AA}. Violation of binary scaling??? Wide pT range (→ collisional/Radiative energy loss. → transport properties)

<u>Jet measurements</u>

- High pT Jets
- Jet energy $\leftarrow \rightarrow$ spatial resolution of the medium
 - E-by-E jet analysis(?). Jet-Fluid interaction. Propagation of lost energy in the medium.

<u>Photons</u>

- Enhancement of low pT photon yield
- Production is well-understood???
 - Origin of large photon v2?
 - Hadronic phase? Strong EM field?
 - v_n of photon production. γ - γ HBT

<u>Dileptons</u>

- Inconsistent between STAR and PHENIX
- ALICE is important!!
 - Mass modification of LVM
 - Virtual photons, radiation from EM field
 - direct thermal dielectrons (M_{ee}, p_T, v_n).
 - Energy loss (angular de-correlation) of HQ

Ó

0.5

1.5

2.5

3

3.5

m_{ee} (GeV/c²)

<u>What we have to understand</u>

• Initial conditions

• E-by-E, higher order flow not only from soft sectors but also from hard probes, p-p/p-Pb collisions

• Temperature dependence of the medium properties

• E-by-E, higher order flow not only from soft sectors but also from hard probes, Leptons & Photons

Thermalization mechanism, Dynamics of non-equilibrium QCD
Longidudinal correlation, Leptons & Photons, p-p and p-Pb

• What we need are:

- High luminosity
- High rate capability (for being able to inspect all MB collisions)
- High performance detectors (jet, HQ, photons, leptons)

ALUCE upgrade plans

15

ALICE upgrade strategy

- Need to accumulate not only soft probes but also wide p_T jets, photons, dileptons, heavy quarks
 - Some of them = untriggerable
 - Require a large event samples on tape
 - Increase rate capabilities to inspect all MB heavy-ion collision
 - read out all Pb-Pb interactions at a maximum rate of 50~100kHz (i.e. L = 6x10²⁷ cm⁻²s⁻¹), with a minimum bias trigger
 - Replace dead-time detectors (TPC, SDD) or detector front-ends (pilepined readout, multi-event buffering)
 - DAQ (online tracking, data compression, HLT, event building)
- This is ALICE major upgrade in LS2 (2018)
 - ALICE upgrade proposal endorsed by LHCC

Core upgrade plans and Motivation

• New ITS

- 7 layers of Silion Pixel Detector
- Improvement vertex resolution \rightarrow Heavy Flavor
- Improvement low pT tracking efficiency \rightarrow Dielectron
- TPC upgrade
 - Replacing MWPC readout chambers to GEM based readout chambers. No gating Grid operation
 - Improve rate capability \rightarrow Heavy Flavor, Dielectrons, Jets,
- Muon Forward Tracker
 - 4 layers of Silion Pixel detector in front of Muon Absorber at forward rapidity
 - Improve secondary vertex and momentum resolution → Heavy Flavors, Quarkonia, Low Mas dimuons

- Improvement of secondary vertex resolution by x2
 - Measurement of Λ_c , D_s , Λ_b
 - v2 and R_{AA} for wide pT range (down to low pT)

- Improvement of secondary vertex resolution by x2
 - Measurement of Λ_c , D_s , $\overline{\Lambda_b}$
 - v2 and R_{AA} for wide pT range (down to low pT)
 - B measurements (B->D + displaced vertex, B->J/ ψ)

- Improvement of secondary vertex resolution by x2
 - Measurement of Λ_c , D_s , Λ_b
 - v2 and R_{AA} for wide pT range (down to low pT)
 - B measurements (B->D + displaced vertex, B->J/ ψ)
 - Prevision measurements of direct B meson flow!

<u>Di-electron Measurements</u>

- Unique Physics and Measurement at the LHC
 - Chiral symmetry restoration
 - Virtual photons
 - Thermal radiation, Radiation from EM field

- Need to fight with:
 - Conversion/Dalitz
 - S/N (combinatorial)
 - Charm contributions
 - Charm yield
 - Correlation of pairs

Di-electron Measurements

 Current scenario on statistics, tracking and PID capability, but B=0.2 T

<u>Di-electron Measurements</u>

- New ITS + GEM-TPC (keep current tracking & PID capability)
 Improve tracking officiency, rejection of conversion and Dalitz
 - Improve tracking efficiency, rejection of conversion and Dalitz
- 50kHz data taking. B=0.2 T

ALICE GEM-TPC upgrade

<u>ALCIE TPC - I</u>

- Diameter: 5.6 m, length: 5.2 m
- Acceptance: $|\eta| < 0.9$, $\Delta \phi = 2\pi$
- Readout Chambers: total = 72
 - Outer: 18 x 2, Inner: 18 x 2
 - Pad size
 - Inner: 4 × 7.5 mm²
 - Outer: 6 × 10 mm²
 - Pad channel number = 557,568
- Gas: Ne-CO₂-N₂ (90-10-5) at Drift field = 400V/cm
 - Diffusion ~0.2mm /1cm
 - Drift velocity ~0.8cm/µs
- Total drift time: 92µs

Current Rate limitation

Gating Grid operation

- Gating Grid (GG) is used to prevent ion back flow into the drift region
- It takes ~180 µs for the ions generated in the MWPC to reach the GG → unavoidable dead time after each triggered event
- Additional 100 μ s for suppression of event pile-up

TPC Core Upgrade and strategy

• Goal, Requirements

• No gating grid operation but keep small ion back flow capability to avoid a field distortion in the drift space

- 0.25-1% of IBF at the gain of 2000 (= 5~20 ions per one seed)
- Maintain the gain stability under 100 kHz/cm² particle rate
 - This is not possible with MWPC. Gain decreases by ~20%.
- Keep current PID and tracking capabilities

• Strategy

- TPC Continuous readout without gating grid
 - No trigger, No deadtime
- Replace MWPC readout by GEM readout
 - Efficient to block back-drifting ions
 - High rate capability
 - Preserve PID and tracking capability

What is GEM?

- Invented b F. Sauli (~1997)
- Standard GEM foil
 - 50um thick kapton
 - 5um Cu electrode
 - Pierce the hole (by chemical, laser, plasma etching)
- Potential between upper and lower electrode
 - Avalanche inside of the hole
- Merit of the GEM (compared to MWPC)
 - Stable operation by stack configuration
 - High rate capability
 - Good IBF capability with asymmetric field
 - No ExB effect

Experience of GEM in CNS

- We started GEM R&D since 2002.
- Fabrication of GEM in Japan (SciEnergy)
 - Plasma + Laser etching
 - Cylindrical holes
 - No charge up \rightarrow stable operation
 - Thicker GEM (100um, 125um GEM) \rightarrow stable operation

Experience of GEM in CNS

• Another type of GEM

- COBRA-GEM for ion feedback suppression
- Glass-GEM (no out gas, no neutron reaction with H, long term stability)
- Telfon GEM (large arc resistance, robust against discharge/spark)
 - No short of GEM even after 10⁴ times discharges (at single GEM gain~10⁴)!

• Application

- GEM-TPC (CF₄)
- X-ray Imaging

R&D items of GEM-TPC upgrade

- Gain stability of GEM under Ne/CO₂
- Systematic study of Ion back flow
 - 3-4 GEM layers (pitch, hole, transfer field dependence)
 - Another type of GEM (Cobra GEM)
 - Micromegas + 2 GEM systems
 - Garfield simulation
- Large size foil R&D, IROC Prototype and Beamtest
- Electronics R&D
 - SAMPA chip, GdSP chip
- Performance evaluation, reconstruct strategy

Expected Performance

Position Resolution

• Slightly worse than MWPC due to lack of a Pad Response function in GEMs (narrow spread of signal over pads)

 Near the chamber worse resolution due to low diffusion and narrow PRF

Expected Performance

Momentum Resolution

- Very little deterioration for TPC standalone and 6 pile-up events
 - Less merged cluster in case of GEMs: lack of PFR
- No difference between MWPC and GEM in case of ITS vertex +TPC tracking

IBF studies

- Dedicated test setup at CERN, TUM, FRA, Tokyo
- Systematic studies as a function of:
 - rate \rightarrow space-charge effect to the IBF
 - Field configuration, number of GEM layers, large pitch foil
- Measure the current

at cathode and anode pad.

 $\mathsf{IBF}=(\mathsf{I}_{c}-\mathsf{I}_{c}^{0})/\mathsf{I}_{a}$

<u>IBF studies</u>

- 3 standard GEM setups ~ 2% of IBF
- 4 GEM setup with large pitch foils on GEM1 and GEM3
 - LP-S-LP-S: LP=280um pitch (S=140um pitch)
 - Reach 0.8% of IBF and secured some flexibility
- Further studies are on going
 - S-LP-LP-S setup
 - Resolution
 - Smaller pitch GEM
 - Conical GEM
 - etc...

IBF studies

- Alternative options = "COBRA" GEMs
 - Additional electrode and potential difference to absorb ions

<u>Stability</u>

- GEM detector system and wire chamber system in one gas loop system. (common on gas concentration and P/T)
 - Wire-chamber is reference. Stability = 0.45%

IROC Prototype and beamtest

- Large size GEM by "single" mask technology
 - 3 GEM layers for IROC size and prototype
 - Beamtest at CERN-PS T10 beamine (10-11. 2012)
 - PCA16 + ALTRO electronics (from LCTPC) + ALICE DAQ system

29

IROC Prototype

- dE/dx resolution
 - Only 46 rows are used.
 - Almost equal to the expected for MWPC.
 Performance is preserved.

<u>Readout system</u>

• Readout system

- Replace existing PASA+ALTRO to SAMPA system
- SAMPA = 32channel PASA (dual polarity) + ALTRO in same die
 - 10~20MHz ADC capability, DSP, support trigger/continuous readout
- Option = "GdSP" chip being developed at CERN
 - 40MHz, 128channel input, DSP, high speed data transmission via GBT

Status and Plans

- Technical Design Report will be submitted soon.
- 2013-2014: design and prototyping
- 2015-2016: production of GEMs (chambers) and FEE
- 2017-2018: Construction of ROCs, Installation and commissioning
 - Depending on shutdown schedule

Summary and Outlook

- ALICE upgrades have been proposed to strengthen physics programs for precision QGP studies.
 - E-by-E flow, higher order flow for soft~hard probes, lepton, photons
 - ALICE is unique in low p_T physics, HQ measurements, dielectron measurement
 - Inspecting 50kHz of minimum bias Pb-Pb collisions
 - Require core upgrades (ITS, TPC, electronics, and DAQ), enhanced rate capabilities , and running beyond LS2/LS3.
 - Significant R&D efforts are on-going
 - GEM-TPC R&D is ongoing
 - To prove the principle, low IBF, space-charge distortion, online-offline corrections, continuous running.

Backup slides

43

Run at 50 kHz Pb-Pb after LS2

 With present MWPC readout, space-charge leads to unbearable distortions (order 1 m) and deterioration of dE/dx (10-20% gain drop)

GEMs offer the possibility to sustain continuous readout under high rates at a lower gain, while efficiently blocking ions to the % level
 100 m² of large size foils, long drifts, high rates

Ongoing R&D: Ion Back Flow (IBF)

- High rates and long drifts: 'standard' GEM operation results in too large distortions (IBF 5-10%).
- IBF can be minimised by optimising electric fields, GEM geometry, gain sharing*: for IBF ~ 0.25% distortions stay well below 10 cm, as shown in simulations below
- Target value is IBF ~ 0.25% at gain 1000-2000

* M. Killenberg et al. NIM A530, 251 (2004), B. Ketzer et al. arXiv:1207.0013 24.09.2012 TPC - LHC upgrade review

<u>Core Detector Upgrades - ITS</u>

• 6->7 Si layers

- 7 pixels or 3(pixel)+4(strip)
- Inner most at R=2.2cm
- Low material $0.3\%X_0$ /lay ($\leftarrow 1.14\%X_0$)
- Hybrid-pixel or MAPS(MIMOSA, LePIX, INMAPS). Extensive R&D.
- Improve vertex resolution by factor of 3
- Improve low pT tracking efficiency

Other upgrades - FOCAL

- FOCAL(Forward Calorimeter)
 - Gluon saturation at small-x
 - Early stage dynamics of HI collisions
- Unique opportunity for ALICE
 - highest eta(>3) with wide p_T coverage
 - Prompt photon, π^0 , jets, (quarkonia) and correlation with rapidity gap
- W+Si EM Sampling Calorimeter
 - + H-CAL behind under consideration
 - Two possibilities on location
 - 3m (2.5<eta<4.2) from IP
 - 8m (3.3<eta<5.0) from IP

C.A. Salgado, JPG 38 (2011) 124036

Other upgrades - FOCAL

- FOCAL detector design
 - Two combination of the detector
 - Low granularity Si-Pad layers
 - High granularity Si pixel layers
 - Separation of $\pi^0 \rightarrow 2\gamma$ and prompt γ
- Prototype R&D
 - Si-Pad and electronics ASIC development (CNS et al.)
 - Si-Pixel (MAPS) development

Beamtest of CNS FoCAL (Si-Pad) in 2011

pad-segments

Core Upgrade - DAQ

- DAQ upgrade
 - Requirements: ~1TByte/s detector readout, 20GB/s in storage
 - Strategy:
 - Data reduction by (partial) online reconstruction and compression.
 - Store only reconstructed data (tight coupling between online and offline)

FTP (Fast Trigger Processor)

- CLK/L0/L1, data tagging (ITS/TPC)
 DDL/RORC
- DDL3(10GB/s)
- 10-12 DDL3, PCIe GEN3 in RORC3 Network
- 10/100GBit Ethernet
- QDR/FDR Infiniband (42/50GBit) FLP (First Level Processor)
- ZS, data compression/localized reconstruction

EPN (Event building and Processing Node

 Event building/final data compression (CPU/GPU)

Single mask GEM

Single mask GEM

R. De Oliveira

49.6

•Similar patterns, similar behavior, same material.

•Angles can be adjusted in both structure (Typ. value : 70um copper hole , 50um polyimide hole)

Steeper angles give lower gain but also reduced charging up (similar as RIM in THGEM)

66.6

51.2-

69.4

7.5

Single mask GFM

R. De Oliveira

e material. re (Typ. value : 70um copper hole , 50um

THGEM) WILL BE USED FOR CMS FORWARD MUON TRACKE

• Improvement of secondary vertex resolution by x2

- Measurement of Λ_c , D_s , $\overline{\Lambda_b}$
- v2 and R_{AA} for wide pT range (down to low pT)
- Better feasibility to measure Λ_c

ALICE Status with the upgrades

		Status as of today	Reachable for approved	Reach with the upgrade
Bulk production	light flavours, v ₂ , HBT	quantitative	precision	precision
Intermediate p_t	v_2 , correlations, baryon-meson	quantitative	precision	precision
High-p _t – jets	R _{AA} , correlations, jet fragm.	quantitative	precision	precision
	heavy-flavour in jets		hint	quantitative
	PID fragmentation	hint	quantitative	precision
Heavy flavour	D-mesons, R _{AA}	quantitative		precision
	D-meson v ₂	hint		precision
	beauty, D _s	hint	quantitative	precision
	charm baryons		hint	quantitative
Charmonia	J/ψ forward, R_{AA}	quantitative	precision	precision
	$J/\psi v_2$	hint	quantitative	precision
	ψ', χ _c			quantitative
	J/ψ central, Y family	hint	quantitative	precision
Dileptons – γ	virtual γ	hint		quantitative
	ρ-meson			quantitative
Heavy nuclei	hyper(anti)nuclei, H-dibaryon	hint	quantitative	precision 41

<u>ALCIE TPC - II</u>

• Gating wire

- Prevent ions from drifting back to the drift space
- Important to avoid field distortion
- Cathod, anode wire planes
- Gas gain ~ 2x10⁴
- Multiplication of drift

electrons at anode

Induced current on the readout pad

Current Limitations - II

• Current readout capability is worse

- Maximum is ~300 Hz due to TPC readout capability
- LS1 upgrade (RCU upgrade) \rightarrow 1kHz BW

Rate tolerance of wire amplification. O(10kHz/cm²)

• 10¹⁰ central events. Feasible for these measurements

Particle	Yield	
Anti-alpha ⁴ He	$3.0 imes 10^4$	
Anti-hypertriton ${}^{3}_{\bar{\Lambda}}\overline{H}$ ($\bar{\Lambda}\bar{p}\bar{n}$)	$3.0 imes 10^5$	
${}^{4}_{\bar{\Lambda}}\overline{H}$ ($\bar{\Lambda}\bar{p}\bar{n}\bar{n}$)	$8.0 imes 10^2$	
${}^{5}_{\overline{\Lambda}}\overline{H}$ ($\overline{\Lambda}\overline{p}\overline{n}\overline{n}\overline{n}$)	3.0	
${}^{4}_{\bar{\Lambda}\bar{\Lambda}}\overline{H}$ ($\bar{\Lambda}\bar{\Lambda}\bar{p}\bar{n}$)	$3.4 imes 10^1$	
${}^{5}_{\bar{\Lambda}\bar{\Lambda}}\overline{\mathrm{H}}$ ($\bar{\Lambda}\bar{\Lambda}\bar{p}\bar{n}\bar{n}$)	0.2	
H-Dibaryon $(\Lambda\Lambda)$	$5.0 imes 10^6$	
ΞΞ	$1.5 imes 10^5$	
Λn	$8.0 imes 10^7$	

Future ALICE Program

- ALICE heavy-ion program approved for 1~10nb⁻¹:
- Possible scenario
 - 2013-14 Long Shutdown 1 (LS1)
 - completion of TRD and installation of Di-jet CAL
 - 2015 Pb-Pb at $\sqrt{s_{NN}} = 5.1$ TeV
 - 2016-17 Pb-Pb at $\int s_{NN} = 5.5 \text{ TeV}$
 - 2018 Long Shutdown 2 (LS2)
 - 2019 Pb-Pb 2.85nb⁻¹
 - 2020 Pb-Pb 2.85nb⁻¹ (low magnetic field)
 - 2021 p-p reference run
 - 2022-2023 Long Shutdown 3 (LS3)
 - 2024-2026: Pb-Pb/p-Pb run with ALICE upgrade

(3.5 month/year for HI, 1 month with low B)

Space-charge distortion

- Maximum radial and azimuthal distortions for various gas mixtures at IBF=1% and gain=2000
- Ne-CO₂-N₂ is baseline gas mixture.
 - Online corrections to 0.01% (0.02cm) are required
 - Space-charge map, fluctuation map (from Pb-Pb raw data)

<u>IBF studies</u>

- 3 standard GEM setup
 - Measurement at gain = 2000
 - Better IBF with high Et1 and low Et2 but IBF=2%! Not enough!

<u>IBF studies</u>

- Another option = "2 GEM + Micromegas"
 - MMG has good IBF capability.
 - With 1000LPI mesh, IBF ~ E_1/E_2 ~ 1%.
 - Further IBF suppression with 2 GEMs x 10, IBF~0.1% can be possible.
 - On-going measurements!

