Heavy Ion Meeting 2013-10, Inha Univ., Korea, Nov.2, 2013

REVIEW OF RECENT DEVELOPMENT IN HYDRO

Tetsufumi Hirano Sophia Univ.

K.Murase, TH, arXiv:1304.3243 Y.Tachibana, TH, Nucl.Phys.A904-905(2013)1023c Y.Tachibana, talk at Hard Probes 2013 M.Hongo, Y.Hirono, TH, arXiv:1309.2823

Outline

- Introduction
- Relativistic fluctuating hydrodynamics
- Medium response to jet propagation
- Anomalous hydrodynamics and chiral magnetic effect
- Summary

Hydrodynamics as a central framework of heavy ion collisions

RELATIVISTIC FLUCTUATING HYDRODYNAMICS

Higher Harmonics is Finite!

Figures adapted from talk by J.Jia (ATLAS) at QM2011

5

Two particle correlation function is composed solely of higher harmonics

See talks by Y.-S.Kim and M.-J. Kweon

Impact of Finite Higher Harmonics

- Most of the people did not believe hydro description of the QGP (~ 1995)
- Hydro at work to describe elliptic flow (~ 2001)
- E-by-e hydro at work to describe higher harmonics (~ 2010)

Is fluctuation important in such a small system?

initial

profile

coarse

graining

size

Thermal Fluctuation

- Conventional hydro describes space-time evolution of (coarse-gained) thermodynamic quantities.
- Some of microscopic information must be lost through coarse-graining process.
- Does the lost information play an important role in dynamics <u>on an e-by-e</u> <u>basis</u>?
 - → Thermal (Hydrodynamic) fluctuation!

J.Kapusta, B.Muller, M.Stephanov, PRC85(2012)054906. J.Kapusta, J.M.Torres-Rincon, PRC86(2012)054911. P.Kovtun, G.D.Moore, P.Romatschke, PRD84(2011)025006. J.Peralta-Ramos, E.Calzetta, JHEP1202(2012)085.

Causal Hydrodynamics

Linear response to thermodynamic force $\Pi(t) = \int dt' G_R(t,t') F(t')$

	Dissipative current Π	Themodynamic force F
Shear	Shear stress tensor	Gradient of flow
Bulk	Bulk pressure	Divergence of flow
Diffusion	Diffusion current	Gradient of chemical potential

Causal Hydrodynamics (contd.)

1. Delta function (acausal, 1st order hydro)

$$G_R(t,t') = \kappa \delta(t-t') \rightarrow \Pi(t) = \kappa F(t)$$

2. Retarded Green function (causal, 2nd order hydro)

$$G_R(t,t') = \frac{\kappa}{\tau} \exp\left(-\frac{t-t'}{\tau}\right) \theta(t-t')$$

Differential form

$$\dot{\Pi}(t) = -\frac{\Pi(t) - \kappa F(t)}{\tau}$$
, $v_{\text{signal}} = \sqrt{\frac{\kappa}{\tau}} < c$

Maxwell-Cattaneo Eq. (simplified Israel-Stewart Eq.)

K.Murase and TH, arXiv:1304.3243[nucl-th]

Relativistic Fluctuating Hydrodynamics (RFH)

Generalized Langevin Eq. for fields

$$\Pi(x) = \int d^4x' G_R(x, x') F(x') + \delta \Pi(x)$$

Fluctuation-Dissipation Relation (FDR)

$$\langle \delta \Pi(x) \delta \Pi(x') \rangle = TG^*(x,x')$$

 G^* : Symmetrized correlation function $\delta \Pi$: Hydrodynamic fluctuation

For non-relativistic case, see Landau-Lifshitz, Fluid Mechanics

Colored Noise in Relativistic System

$$G_R(t,t') = \frac{\kappa}{\tau} \exp\left(-\frac{t-t'}{\tau}\right)\theta(t-t')$$

 G^* : Extention to t < t'Correlation in Fourier space

$$\left\langle \delta \Pi^*_{\omega, \mathbf{k}} \delta \Pi_{\omega', \mathbf{k}'} \right\rangle = 2\kappa \frac{(2\pi)^4 \delta(\omega - \omega') \, \delta^{(3)}(\mathbf{k} - \mathbf{k}')}{1 + \omega^2 \tau^2}$$

\rightarrow Colored noise!

- \rightarrow As a consequence of causality
- \rightarrow Note: white noise in differential form

cf.) C. Young, arXiv:1306.0472

Figures from J.B.Bell et al., ESAIM 44-5 (2010)1085

Fluctuation in Non-Linear Equation

Ex.) Seeds for instabilities

Kelvin-Helmhortz instability

Rayleigh-Taylor instability

Need numerical implementation of fluctuating hydro

MEDIUM RESPONSE TO JET PROPAGATION

Figures adapted from talk by C.Roland (CMS) at QM2011

Jet Quenching as Missing p_T

Jet momentum balanced by low p_T hadrons outside the jet cone! → Medium response? See talk by Y.-S. Kim

Figure adapted from talk by C.Roland (CMS) at QM2011

Momentum Balance Restored

Horizontal: Jet asymmetry

Vertical: Transverse momenta (anti-)parallel to jet axis

Lost energy \rightarrow low p_T particles at large angle

Energy and Momentum Flowing into QGP

- Jet quenching could affect QGP expansion at LHC (and even at RHIC?)
- Relativistic hydrodynamics with a source term due to propagation of jets

$$\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = J_{\text{jet}}^{\nu}$$

$$J_{\text{jet}}^{0}(x) = -\frac{dp_{0}}{dt} \delta^{(3)}(x - x(t))$$

$$J_{\text{jet}}^{i}(x) = -\frac{dp_{0}}{dt} \frac{p^{i}}{p^{0}} \delta^{(3)}(x - x(t))$$
16

Y.Tachibana and TH, Nucl.Phys.A904-905(2013)1023c

QGP Wake by Jet

A 50 GeV jet traverses a
background with T=0.5 GeV
→ Mach-cone like structure

Vortex ring behind a jet

Y.Tachibana and TH, Nucl.Phys.A904-905(2013)1023c

QGP Mach Cone Induced by a Jet

Energy density

Energy Balance in and out-of Jet Cone in Hydro + Jet Model

Another Channel to Constrain Shear Viscosity?

- Jet propagation induces large flow velocity along jet axis.
- How much momentum diffuses perp. to jet axis?

AND CHIRAL MAGNETIC EFFECT

Strong EM fields in Heavy Ion Collisions

Positively charged heavy ion as a source of electro magnetic field → Ampere's law

eB~10¹⁷ Gauss!!!

Figure taken from http://physics.aps.org/articles/v2/104

Charge Asymmetry of Pion v_2

G.Wang (STAR), arXiv:1210.5498

Charge asymmetic results indicate existence of electromagnetic effects of transport?

Chiral Magnetic Wave

Slide taken from a seminar talk by M.Hongo at BNL (2013)

For introduction of CME and CSE, see K.Fukushima, arXiv:1209.5064

Anomalous Hydro

Hydrodynamic eqs. under EM fields + anomaly

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}j_{\lambda}$$
$$\partial_{\mu}j^{\mu} = 0, \partial_{\mu}j^{\mu}_{5} = -\frac{1}{2\pi^{2}}E_{\mu}B^{\mu}$$

Constitutive eqs. incl. CME and CSE

$$j^{\mu} = nu^{\mu} + \kappa_B(\mu, \mu_5)B^{\mu}$$
$$j^{\mu}_5 = n_5 u^{\mu} + \xi_B(\mu, \mu_5)B^{\mu}$$

D.T.Son and P.Surowka, PRL103 (2009) 191601

Source of Axial Charge

 $\partial_{\mu} j_5^{\mu}$ $-2 E_{\mu}B^{\mu}$

 \rightarrow Quantum anomaly term

M.Hongo, Y.Hirono, TH, arXiv:1309.2823 Charge and Axial Charge in Expanding Case

Charge density and axial charge density in the transverse plane at t = 6 fm/c

M.Hongo, Y.Hirono, TH, arXiv:1309.2823 Difference of v_2 btw. Positive and Negative pions

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0

0.005

%

 $\Delta v_2 = v_2$

STAR data

0.015

 A_{+}

0.02

0.025

0.03

0.01

without Anomaly B3 with Anomaly B3

with Anomaly B6

Need more quantitative analysis of anomalous hydro

Summary

Hydrodynamic framework/simulation extended in three directions

Relativistic fluctuating hydrodynamics

$$\Pi(x) = \int d^4x' G_R(x, x') F(x') + \delta \Pi(x)$$

- Source term from jet propagation $\partial_{\mu}T^{\mu\nu}_{\rm fluid} = J^{\nu}_{\rm jet}$
- Quantum anomalous effects $j^{\mu} \propto \mu_5 B^{\mu}, \qquad j_5^{\mu} \propto \mu B^{\mu}$

Eccentricity Fluctuation in Small System

Fluctuation in Initial Conditions

 $\varepsilon_n = \frac{\langle r^2 e^{in\phi} \rangle}{\langle r^2 \rangle}$

 $\varepsilon_{n,\text{std}} = \Re \varepsilon_n$ $\varepsilon_{n,\text{part}} = |\varepsilon_n|$

B.Alver *et al.,* Phys. Rev. C 77, 014906 (2008)

Green-Kubo Formula

$$\eta = \lim_{\omega \to 0} \lim_{q \to 0} \frac{1}{2\omega} \int dt dx \, e^{i(\omega t - qx)}$$
$$\times \left\langle \left[T_{xy}(t, x), T_{xy}(0, 0) \right] \right\rangle$$

Slow dynamics \rightarrow How slow?

Macroscopic time scale ~ 1/ω ← t_{"macro"}
 Microscopic time scale ~ τ
 cf.) Long tail problem (liquid in 2D, glassy
 system, super-cooling, etc.)

Relaxation and Causality

Constitutive equations at Navier-Stokes level

$$\begin{aligned} \pi^{\mu\nu} &= 2\eta\partial^{<\mu}u^{\nu>},\\ \Pi &= -\varsigma\partial_{\mu}u^{\mu}, \end{aligned}$$

Instantaneous response violates causality

- → Critical issue in relativistic theory
- → Relaxation plays an essential role

Coarse-Graining in Time

Existence of upper bound in coarse-graining time (or lower bound of frequency) in relativistic theory???

Outlook for RFH

- Numerical implementation in full hydro equation (not linearized one) and its consequences in observables
- Langevin simulation in constrained system?
- Dynamic critical phenomena
 - \rightarrow Need further formulation of RFH

Large Angle Emission from Expanding Medium

Jet pair created at off central position

Enhancement of low momentum particles at large angle from jet axis

Outlook for Interplay between Soft and Hard

 Alternative constraint for shear viscosity through propagation of jets?

 Heat-up due to mini-jets propagation similar to neutrino reheating in Super Nova Explosion?

Anomalous Hydrodynamics

 \Diamond Conservation law :

(Son, Surowka(2009))

 $\varepsilon + p J$

$$\partial_{\mu}T^{\mu\nu} = eF^{\nu\lambda}j_{\lambda}, \quad \partial_{\mu}j^{\mu} = 0, \quad \partial_{\mu}j^{\mu}_{5} = -CE^{\mu}B_{\mu}$$

 \diamond Constitutive equation :

$$j^{\mu} = nu^{\mu} + \kappa_{B}B^{\mu} + \kappa_{\omega}\omega^{\mu}$$
Chiral Magnetic/Vortical Effect(CME/CVE)
$$j^{\mu}_{5} = n_{5}u^{\mu} + \xi_{B}B^{\mu} + \xi_{\omega}\omega^{\mu}$$
Chiral Separation Effect ... (CSE)
$$\diamond \text{ Coefficients :}$$

$$e\kappa_{B} = C\mu_{5}\left(1 - \frac{\mu n}{2}\right)$$

$$e^{2}\kappa_{\mu} = 2C\mu\mu_{5}\left(1 - \frac{\mu n}{2}\right)$$

 $\varepsilon + p$ /

 $e\xi_B = C\mu \left(1 - \frac{\mu_5 n_5}{\varepsilon + p}\right)$

 $e^2 \xi_\omega = C \mu^2 \left(1 - \frac{2\mu_5 n_5}{\varepsilon + p} \right)$

Setup (1) Hydrodynamic equations

 \diamond Conservation law

$$\partial_{\mu}T^{\mu\nu} = eF^{\nu\lambda}j_{\lambda}, \quad \partial_{\mu}j^{\mu} = 0, \quad \partial_{\mu}j^{\mu}_{5} = -CE^{\mu}B_{\mu} \quad \left(C = \frac{N_{c}e^{2}}{2\pi^{2}}\right)$$

 \diamond Constitutive equation (CME and CSE)

$$j^{\mu} = nu^{\mu} + \kappa_B B^{\mu}, \qquad j_5^{\mu} = n_5 u^{\mu} + \xi_B B^{\mu}$$

EoS: ideal gas (Gluons +1-component Fermion)

$$p = \frac{1}{3}e = \frac{g_{qgp}\pi^2}{90}T^4 + \frac{N_c}{6}\left(\mu^2 + \mu_5^2\right)T^2 + \frac{N_c}{12\pi^2}\left(\mu^4 + 6\mu^2\mu_5^2 + \mu_5^2\right)$$
$$n = \frac{N_c}{3\pi^2}\mu^3 + \frac{N_c}{3}\mu\left(T^2 + \frac{3}{\pi^2}\mu_5^2\right), \ n_5 = \frac{N_c}{3\pi^2}\mu_5^3 + \frac{N_c}{3}\mu_5\left(T^2 + \frac{3}{\pi^2}\mu^2\right)$$

M.Hongo, Y.Hirono and TH, arXiv:1309.2823 Full 3D Anomalous Hydro Simulation

"Group velocity" of chiral magnetic wave ~0.58 → CME under expanding background?

 \rightarrow Source of charge asymmetric v_2 ?

Masaru Hongo "Numerical Simulation of Anomalous Hydrodynamics"

Setup (2) Initial condition

Initial State 2013, Illa da Toxa - Spain, September 12th, 2013 11

Event-averaged electric fields

▶ 17