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Detector: 
Size: 16 x 26 meters 
Weight: 10,000 tons 

Collaboration: 
> 1000 Members 
> 100 Institutes  
> 30 countries 

ALICE 

in 2011: 60% 

in 2011: 60% 
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GeV/c up to 20 GeV/c using 
a statistical approach.

10/25/13 A. Ortiz (for the ALICE Collaboration) 6

LUND UNIVERSITY

Hard Probes 2013Hard Probes 2013

PID in ALICE
ITS TPC

TOF HMPID

PID is extended from 2-3 
GeV/c up to 20 GeV/c using 
a statistical approach.

10/25/13 A. Ortiz (for the ALICE Collaboration) 6

LUND UNIVERSITY

Hard Probes 2013Hard Probes 2013

PID in ALICE
ITS TPC

TOF HMPID

PID is extended from 2-3 
GeV/c up to 20 GeV/c using 
a statistical approach.

10/25/13 A. Ortiz (for the ALICE Collaboration) 6

LUND UNIVERSITY

Hard Probes 2013Hard Probes 2013

PID in ALICE
ITS TPC

TOF HMPID

PID is extended from 2-3 
GeV/c up to 20 GeV/c using 
a statistical approach.

Particle identification in ALICE

PID is extended to 20 GeV/c 
using a statistical approach
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Detector: 
Size: 16 x 26 meters 
Weight: 10,000 tons 

Collaboration: 
> 1000 Members 
> 100 Institutes  
> 30 countries 

ALICE 

in 2011: 60% 

in 2011: 60% 

     Tracking:|η|< 0.9, 0<φ<2π 
     TPC: gas drift detector
     ITS: silicon detector

     Charged constituents

   Charged JET

Charged jet at ALICE
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Detector: 
Size: 16 x 26 meters 
Weight: 10,000 tons 

Collaboration: 
> 1000 Members 
> 100 Institutes  
> 30 countries 

ALICE 

in 2011: 60% 

in 2011: 60% 

EMCal is a Pb-scintillator sampling 
calorimeter which covers:
|η|< 0.7, 1.4<φ<π 
tower Δη~0.014, Δφ~0.014

Corrected for energy due to charged 
particles

Neutral constituents

     Tracking:|η|< 0.9, 0<φ<2π 
     TPC: gas drift detector
     ITS: silicon detector

     Charged constituents

              JET

Full jet at ALICE



MinJung Kweon, Inha University                                               

Jet reconstruction in ALICE
• There is no unambiguous jet definition

• Algorithms must be IR and collinear safe

• Fluctuating background and combinatorial jets require care 
in HI analyses

• Input to the jet finder
• Charged tracks (ITS+TPC) with pT > 150 MeV/c
• EMCal clusters corrected for charged particle contamination

• FastJet package: Anti-kT (kT used for background)
• R = 0.2 – 0.6

7
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Jets in pp
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Jets Cross Section in pp

• Important reference for Pb-
Pb collisions

• Good agreement between 
data and NLO calculations
   ⇒Jets are a well calibrated 
probe for the QGP

9

Jet Cross-Section (pp) 
√s = 2.76 TeV, R = 0.4 Inclusive 

6 

arXiv:1301.3475 
PLB: 10.1016/j.physletb.2013.04.026 

Hadronization needed for 
theory-data agreement! 

•  Important reference 
for Pb-Pb collisions 

•  Good agreement 
between data and  
 NLO calculations  
•  Many orders of  

magnitude 
•  Jets are a well 

calibrated probe for 
the QGP 

Rosi Reed - Hard Probes 2013 

Hadronization needed for
theory-data agreement
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Jets Cross Section in pp
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Jet Cross-Section (pp) 
√s = 2.76 TeV, R = 0.4 Inclusive 

6 

arXiv:1301.3475 
PLB: 10.1016/j.physletb.2013.04.026 

Hadronization needed for 
theory-data agreement! 

•  Important reference 
for Pb-Pb collisions 

•  Good agreement 
between data and  
 NLO calculations  
•  Many orders of  

magnitude 
•  Jets are a well 

calibrated probe for 
the QGP 

Rosi Reed - Hard Probes 2013 

Agreement between data and NLO calculations 
is good for both R = 0.2 and 0.4

Jet Cross-Section (pp) 
√s = 2.76 TeV, R = 0.2, 0.4 Inclusive 

Rosi Reed - Hard Probes 2013 7 

Agreement between data and NLO calculations is 
good for both R = 0.2 and 0.4 

arXiv:1301.3475 
PLB: 10.1016/j.physletb.2013.04.026 
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Jet cross section ratio

• Hadronization necessary for theory-data agreement
• Jet structure  
• Jet broadening due to medium effects could change this ratio

11

Jet Cross-Section Ratios 
√s = 2.76, 7 TeV, R = 0.2-0.6 Inclusive 

Rosi Reed - Hard Probes 2013 8 

Hadronization necessary for theory-data agreement 
Related to jet structure 
Jet broadening due to medium effects could change 
this ratio 

arXiv:1301.3475 
PLB: 10.1016/j.physletb.2013.04.026 arXiv:1212.6890 

Full 2.76 TeV 

Charged 7 TeV 

Jet Cross-Section Ratios 
√s = 2.76, 7 TeV, R = 0.2-0.6 Inclusive 

Rosi Reed - Hard Probes 2013 8 

Hadronization necessary for theory-data agreement 
Related to jet structure 
Jet broadening due to medium effects could change 
this ratio 

arXiv:1301.3475 
PLB: 10.1016/j.physletb.2013.04.026 arXiv:1212.6890 

Full 2.76 TeV 

Charged 7 TeV 

arXiv:1301.3475
PLB: 10.1016/j.physletb.2013.04.026
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Fragmentation spectrum

Jet constituent analyses are more differential 
structure measurements than cross-section ratio

12

Momentum 
density  

9 
Jet constituent analyses are more differential 
structure measurements than cross-section ratio 

Sidharth’s 
Poster # 

arXiv:1208.5080 

ξ = log(
pT , jet
pT ,track

) arXiv:1306.2747 

(transverse) 

Fragmentation 
Spectrum 

√s = 7 TeV, R = 0.4 leading charged jet 

(longitudinal) 
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Jets in p-Pb

13
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Jet cross section in pp and p-Pb

14

24

No modification of jet 
cross section in p-Pb
relative to pp
Binary scaling holds

Jet cross section in pp and p-Pb

p-Pb
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24

No modification of jet 
cross section in p-Pb
relative to pp
Binary scaling holds

Jet cross section in pp and p-Pb

p-Pb
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Charged jets

No modification of jet cross 
section in p-Pb relative to pp
⇒ binary scaling holds
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Jet structure in pp and p-Pb
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Jet structure in pp and p-Pb

25

Ratio σ(R=0.2)/σ(R=0.4) 
Sensitive to the profile of the jet energy density

Compatible in p-Pb and pp (and PYTHIA)

No indication of jet structure modification due to CNM effects

pp p-Pb vs. ppJet structure in pp and p-Pb

25

Ratio σ(R=0.2)/σ(R=0.4) 
Sensitive to the profile of the jet energy density

Compatible in p-Pb and pp (and PYTHIA)

No indication of jet structure modification due to CNM effects

pp p-Pb vs. pp

Ratio σ(R=0.2)/σ(R=0.4)
Sensitive to the profile of the jet energy density
Compatible in p-Pb and pp (and PYTHIA)
No indication of jet structure modification due to CNM effects
Note: comparison between different CMS
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pp and p-Pb jets
• We have established a good baseline for heavy ion jet 

measurements by quantifying observables in both pp and p-Pb 
• pp jets observables agree well with models 

• Jets do not appear to be greatly modified in p-Pb compared to pp
• more differential analyses are on-going. 

16

pp and p-Pb jets 
! We have established a good baseline for 

heavy ion jet measurements by quantifying 
observables in both pp and p-Pb 
!  pp jets observables agree well with models 

!  Jets do not appear to be greatly modified in 
p-Pb compared to pp 
!  However more 

    differential analyses  
    are on-going! 

Rosi Reed - Hard Probes 2013 17 
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Jets in Pb-Pb

17
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RPb-Pb for single particles

• Charged hadrons 
are suppressed in 
heavy ion collisions

• Need to quantify 
suppression 
mechanisms
⇒Jet spectra and 
structure

18

Pb-Pb  

Rosi Reed - Hard Probes 2013 19 

Charged hadrons 
are suppressed in 
heavy ion 
collisions 
 
Time to quantify 
suppression 
mechanisms 
 
Jet spectra and 
structure 
 

ALICE-arxiv:1210.4520, 1208.2711 
CMS-arxiv:1205.6334, 1102.5435, 1201.3093  

ALICE-arxiv:1210.4520, 1208.2711 

CMS-arxiv:1205.6334, 1102.5435, 1201.3093
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Heavy ion challenge
• Jet finding algorithms will cluster “jets” from soft background

• Combinatorial jets (fake)
• Depend on R and jet constituent pT

• 2 methods to remove fake jets
• Leading track bias, h-jet correlations

19

Jet Spectra  
√s = 2.76 TeV, R = 0.4 Inclusive 

Rosi Reed - Hard Probes 2013 21 

Leading track bias removes combinatorial jets but 
biases the fragmentation 
ALICE uses a leading track bias of  pT,track > 5 GeV/c 

Arxiv: coming soon 

arXiv:1304.6668 

Full 

Charged 

Jet Spectra  
√s = 2.76 TeV, R = 0.4 Inclusive 

Rosi Reed - Hard Probes 2013 21 

Leading track bias removes combinatorial jets but 
biases the fragmentation 
ALICE uses a leading track bias of  pT,track > 5 GeV/c 

Arxiv: coming soon 

arXiv:1304.6668 

Full 

Charged 

Leading track bias removes combinatorial jets but biases the fragmentation
ALICE uses a leading track bias of pT,track > 5 GeV/c
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Jet RAA and RCP

20

Jet RAA and RCP 
 √sNN = 2.76 TeV, R=0.2 
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RAA models and comparison

• Direct connection between charged hadron and jet RAA 
requires theory interpretation 

• Understanding jet quenching requires well developed models

21

 RAA Models and comparisons 

Rosi Reed - Hard Probes 2013 23 

K. Tywoniuk 
IS2013 

Direct connection between 
charged hadron and jet RAA 
requires theory interpretation 
Understanding jet quenching 
requires well developed models 

Your 
model 
here! 

 RAA Models and comparisons 

Rosi Reed - Hard Probes 2013 23 

K. Tywoniuk 
IS2013 

Direct connection between 
charged hadron and jet RAA 
requires theory interpretation 
Understanding jet quenching 
requires well developed models 

Your 
model 
here! 
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Ratio of jet spectra

• No evidence of jet structure modification in jet core 
• Charged jet ratio σ(R=0.2)/σ(R=0.3) consistent
with vacuum jets (PYTHIA) no centrality dependence

22

Ratio of  Jet Spectra      
√s = 2.76 TeV, R=0.2,0.3  

No evidence of  jet structure modification in jet core  

Charged jet ratio σ(R=0.2)/�(R=0.3) consistent 
with vacuum jets (PYTHIA) no centrality dependence 

Rosi Reed - Hard Probes 2013 24 
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Intermediate pT in the bulk in the jet

23

Intermediate pT in the bulk and in the jet

37
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Intermediate pT in the bulk in the jet
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Intermediate pT in the bulk and in the jet

38
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Intermediate pT in the bulk in the jet
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Intermediate pT in the bulk and in the jet

39
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The “baryon anomaly” is a bulk effect!

Near-side peak (after bulk subtraction): p/π ratio 
compatible with that of pp (PYTHIA)
Bulk region: p/π ratio strongly enhanced – 
compatible with overall baryon enhancement

Jet particle ratios not modified in medium? 
Could this still be surface bias?
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Particle flow: Collective motion of particles
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Particle flow: Collective Motion of Particles 

43

X

Z

Y

Px

Py Pz

Particles Flow5=5collective5motion5of5
particles

At5the5beginning5of5the5collision:5the5nuclear5
overlap5region5is5an5ellipsoid.

The5gradient5of5pressure5is5largest5in5the5
shortest5direction5of5the5ellipsoid

The5initial5spatial5anisotropy5evolves5
�MomentumFspace5anisotropy

� symmetric5radial flow5(central5collision)
� anisotropic5transverse flow5(non5central5
collision)

Observables)sensitive)to)
thermodynamic state

� Particle Flow
� Transverse5distributions

� Ratio5of5particles

� Thermal5photons

At the beginning of the collision: the nuclear 
overlap region is an ellipsoid.
The gradient of pressure is largest in the shortest 
direction of the ellipsoid
The initial spatial anisotropy evolves 
→Momentum-space anisotropy

dN
pTdpTdydϕ

=
1
2π

dN
pTdpTdy

(1+ 2ν1 cos(ϕ ) + 2ν2 cos(2ϕ ) + ...)

ν1 = cos(ϕ ) "directed flow" ν2 = cos(2ϕ ) "elliptic flow"

Fourier expansion of azimuthal distributions

ν2 =
py
2 − px

2

py
2 + px

2

Initial spatial anisotropy

Final momentum anisotropy 
reflected in azimuthal distributions

18

LHCP2013, Barcelona, May 13-18 3
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Spatial deformation Azimuthal (φ)
pressure gradients Anisotropic particle density

 Pressure Δpx > Δpy

x
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Isotropic (radial) flow

Anisotropic (elliptic) flow

P >> 0

P = 0

v0
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Spatial deformation Azimuthal (φ)
pressure gradients Anisotropic particle density

 Pressure Δpx > Δpy

x

y

Isotropic (radial) flow

Anisotropic (elliptic) flow

Not a smooth almond

x, b

y
z

Fluctuates Event-by-Event

ATLAS, arXiv:1209.4232
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Anatomy of flow harmonics (vn)
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Anatomy of flow harmonics (vn) 

19LHCP2013, Barcelona, May 13-18M Floris

• v2 dominates for non-central collisions

• “Elliptic Flow”

• Higher harmonics: vn studies

• Fluctuations, transport

• v3 ~ v2  for central collisions

• Fluctuations

• Transverse Momentum Regions

• Low pT (≲ 3 GeV/c):      
collective hydrodynamic expansion

• Intermediate pT (≲ 8 GeV/c):      
soft-hard interplay, recombination

• High pT: jet suppression vs path length            
(see T Tomei, Parallel: Heavy Ions 2)

6
See also: ALICE, PRL107 032301 (2011), CMS, PRC 87 014902 (2013)pT (GeV)

ATLAS, PRC86 014907 (2012)
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Elliptic flow in Au and Pb collisions

28

Elliptic flow in Au and Pb collisions

20

elliptic flow in Au and Pb collisions 
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hydrodynamic behavior continues at LHC energies 

centrality 20-30% PRL 105 (2010) 252302 

28 Dariusz Miskowiec,  ALICE Pb-Pb and p-Pb results,  Cracow Epiphany Conference 2013 

hydrodynamic behavior continues at LHC energies
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Elliptic flow of identified hadrons
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Elliptic flow of identified hadrons

21
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 = 2.76 TeV 10-20%NNsPb-Pb 

arXiv:1205.5761

ALI−PREL−28462

High pT results:
ALICE, PLB 719 18 (2013) [π, p]
CMS, PRL 110 042301 (2013) [π0]
( )

Additional constraints on collective evolutionAdditional constraints on collective evolution

v2 for π, p, K±, K0s, Λ, φ (not shown for Ξ, Ω)
φ at low pT (<3 GeV/c) follows mass hierarchy – at higher pT joins mesons
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Elliptic flow of identified hadrons
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Elliptic flow of identified hadrons

22

v2 for π, p, K±, K0s, Λ, φ (not shown for Ξ, Ω)
φ at low pT (<3 GeV/c) follows mass hierarchy
– at higher pT joins mesons

NCQ scaling: violation ~ 10% at low pT
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v2, v3, v4 versus pT
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v2, v3, v4 versus pT

23

0–5% 5–10% 
10–20% 

40–50% 30–40% 
20–30% 

vn measurements up to 20 GeV/c – where dominated by jet quenching
Non-flow effects suppressed by rapidity gap or using higher cumulants
Non-zero value of v2 at high pT both for Δη > 2 and 4-particle cumulant 

v3 and v4 diminish above 10 GeV/c – indication of disappearance of fluctuations at high pT 

• v3 is not related to reaction plane

• v3 only weakly depends on centrality
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Higher harmonics of flow
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Higher harmonics of flow
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• the azimuthal correlations at high pT fully described by the flow coefficients
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Two particle correlation in η
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Two particle correlations in η

34

17Two-particle angular correlations
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In PbPb, long-range correlations can be explained by flow harmonics (vn)
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In high-multiplicity p-Pb, a ridge develops

Two particle correlations
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CMS. EP JC 72 (2012) 2012 Correlations originating from jets and other sources

Two-particle correlations are a powerful tool to explore the mechanism of particle 
production in collisions of hadrons and nuclei at high energy. Such studies involve 
measuring the distributions of relative angles φ and η between pairs of particles.
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• the azimuthal correlations at high pT fully described by the flow coefficients
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Double ridge (two twin long range) structure
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Extraction of double ridge structure in p-Pb

35

19Extraction of double ridge structure

0-20%

● Extract double ridge structure using a standard technique 
in AA collisions, namely by subtracting the jet-like correlations

● It has been verified that the 60-100% class is similar to pp

● The near-side ridge is accompanied by an almost identical ridge structure 
on the away-side

● Similar analysis strategy by ATLAS (arXiv:1212.5198)

ALICE, PLB 719 (2013) 29

60-100%

Extract double ridge structure by subtracting the jet-like correlations
It has been verified that the 60-100% class is similar to pp
The near-side ridge is accompanied by an almost identical ridge structure on the away-side

Difference between central and peripheral

Extract double ridge structure by subtracting the 
jet-like correlations
It has been verified that the 60-100% class is 
similar to pp
The near-side ridge is accompanied by an 
almost identical ridge structure on the away-side

More on the double ridge

16

Extract v2 from two-particle 
correlations 
Mass ordering at low pT

Crossing at pT≈2 GeV/c

Qualitatively similar to Pb-Pb

Double ridge seen also in the 
correlation of heavy-flavour
decay electrons with hadrons
Suggests that the mechanism 

generating the double ridge is 
at work also for heavy flavours

h - ππππ,K,p correlations HF decay e± - ηηηη correlations

T. Schuster, Thu 14:50 E. Pereira, Tue 14:30

 ALICE, PLB726 (2013) 164

Double ridge seen also in the correlation of heavy-flavour 
decay electrons with hadrons
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Property of double ridge

35

Properties of this double ridge

36

properties of this double ridge 

Fourier analysis of the ridge ! v2 and v3 
like flow:  increase with pt 
unlike flow:  increase with centrality 

arXiv:1212.2001 

42 Dariusz Miskowiec,  ALICE Pb-Pb and p-Pb results,  Cracow Epiphany Conference 2013 

Fourier analysis of the ridge→v2 and v3 like flow: increase with pT
                                                               unlike flow: increase with centrality



MinJung Kweon, Inha University                                               

Summary
• In Pb-Pb collisions ALICE has shown that

• Jets are suppressed RAA, RCP < 1 

• Ratio of jet cross-sections in HI collisions consistent with vacuum 
case

• Hadron-jet analysis allows for a larger R
• Compatible with no energy redistribution within R=0.5 

• CNM do not play a large role for jet observables ⇒ RpPb = 1 

• kT is in agreement with the vacuum case

• Good baseline for future 5.5 TeV Pb-Pb collisions! 

• New insight into the reaction dynamics from LHC
• ridges in high-multiplicity pp and p-Pb collisions
• mass-splitting of v2
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