Flow Harmonics and Jet Suppression at the ALICE

MinJung Kweon Inha University Heavy Ion Meeting in Korea, Fall 2013

Outline of the talk

- ALICE apparatus
- Jet cross section and structure
- Flow harmonics
- Summary

Introduction

Particle identification in ALICE

Charged jet at ALICE

Full jet at ALICE

EMCal

TOF

TRD

in 2011: 60%

PMD

V0

EMCal is a Pb-scintillator sampling calorimeter which covers:

|η|< 0.7, 1.4<φ<π

tower $\Delta\eta \sim 0.014$, $\Delta\phi \sim 0.014$

TPC: gas drift detector

Tracking: $|\eta| < 0.9, 0 < \phi < 2\pi$

Tracking Chambers

Dipole

Magnet

ITS: silicon detector

Charged constituents

JF7

Corrected for energy due to charged particles

L3 Neutral constituents

HMPID

Jet reconstruction in ALICE

- There is no unambiguous jet definition
 - Algorithms must be IR and collinear safe
- Fluctuating background and combinatorial jets require care in HI analyses
- Input to the jet finder
 - Charged tracks (ITS+TPC) with $p_{T} > 150$ MeV/c
 - EMCal clusters corrected for charged particle contamination
- FastJet package: Anti- k_{T} (k_{T} used for background)
 - R = 0.2 0.6

Jets in pp

Hadronization needed for

theory-data agreement

 Important reference for Pb-Pb collisions

 Good agreement between data and NLO calculations

 \Rightarrow Jets are a well calibrated probe for the QGP

Agreement between data and NLO calculations is good for both R = 0.2 and 0.4

Jet cross section ratio

arXiv:1301.3475

- Hadronization necessary for theory-data agreement
- Jet structure
- Jet broadening due to medium effects could change this ratio

Jet constituent analyses are more differential structure measurements than cross-section ratio

Jets in p-Pb

Jet cross section in pp and p-Pb

Jet structure in pp and p-Pb

Ratio σ(R=0.2)/σ(R=0.4)

Sensitive to the profile of the jet energy density

Compatible in p-Pb and pp (and PYTHIA)

No indication of jet structure modification due to CNM effects

Note: comparison between different CMS

R=0.2

R=0.4

pp and p-Pb jets

- We have established a good baseline for heavy ion jet measurements by quantifying observables in both pp and p-Pb
 - pp jets observables agree well with models
- Jets do not appear to be greatly modified in p-Pb compared to pp
 - more differential analyses are on-going.

Jets in Pb-Pb

- Charged hadrons are suppressed in heavy ion collisions
- Need to quantify suppression mechanisms
 ⇒Jet spectra and structure

ALI-DER-45646

ALICE-arxiv:1210.4520, 1208.2711

CMS-arxiv:1205.6334, 1102.5435, 1201.3093

Heavy ion challenge

Jet finding algorithms will cluster "jets" from soft background

- Combinatorial jets (fake)
- Depend on R and jet constituent $p_{\!\scriptscriptstyle T}$

2 methods to remove fake jets

• Leading track bias, h-jet correlations

Leading track bias removes combinatorial jets but biases the fragmentation ALICE uses a leading track bias of $p_{T,track} > 5$ GeV/c

Jet R_{AA} and R_{CP}

MinJung Kweon, Inha University

- Direct connection between charged hadron and jet R_{AA} requires theory interpretation
- Understanding jet quenching requires well developed models

Ratio of jet spectra

- No evidence of jet structure modification in jet core
- Charged jet ratio σ(R=0.2)/σ(R=0.3) consistent
 with vacuum jets (PYTHIA) no centrality dependence

Intermediate p_T in the bulk in the jet

Intermediate p_T in the bulk in the jet

Intermediate p_T in the bulk in the jet

Near-side peak (after bulk subtraction): p/π ratio compatible with that of pp (PYTHIA)
 Bulk region: p/π ratio strongly enhanced – compatible with overall baryon enhancement
 The "baryon anomaly" is a bulk effect!

Jet particle ratios not modified in medium?

Particle flow: Collective motion of particles

Final momentum anisotropy reflected in azimuthal distributions

At the beginning of the collision: the nuclear overlap region is an ellipsoid.

The gradient of pressure is largest in the shortest direction of the ellipsoid

The initial spatial anisotropy evolves
→Momentum-space anisotropy

Isotropic (radial) flow

Not a smooth almond

Fluctuates Event-by-Event

Anatomy of flow harmonics (vn)

 $\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$

- v₂ dominates for non-central collisions
 - "Elliptic Flow"
- Higher harmonics: vn studies
 - Fluctuations, transport
- $v_3 \sim v_2$ for central collisions
 - Fluctuations
- Transverse Momentum Regions
 - Low p_T (≈ 3 GeV/c): collective hydrodynamic expansion
 - Intermediate p_T (≈ 8 GeV/c): soft-hard interplay, recombination
 - High p_T: jet suppression vs path length

hydrodynamic behavior continues at LHC energies

Elliptic flow of identified hadrons

Additional constraints on collective evolution

*v*₂ for π, p, K[±], K⁰_s, Λ, ϕ (not shown for Ξ, Ω) ϕ at low *p*_T (<3 GeV/*c*) follows mass hierarchy – at higher *p*_T joins mesons

– at higher p_T joins mesons

NCQ scaling: violation ~ 10% at low p_T

 v_n measurements up to 20 GeV/*c* – where dominated by jet quenching Non-flow effects suppressed by rapidity gap or using higher cumulants Non-zero value of v_2 at high p_T both for $\Delta \eta > 2$ and 4-particle cumulant

 v_3 and v_4 diminish above 10 GeV/c – indication of disappearance of fluctuations at high p_T

- v₃ is not related to reaction plane
- v₃ only weakly depends on centrality

Higher harmonics of flow

• the azimuthal correlations at high p_T fully described by the flow coefficients

Double ridge (two twin long range) structure

Double ridge seen also in the correlation of heavy-flavour decay electrons with hadrons

Property of double ridge

arXiv:1212.2001

Fourier analysis of the ridge $\rightarrow v_2$ and v_3 like flow: increase with p_T unlike flow: increase with centrality

- In Pb-Pb collisions ALICE has shown that
 - Jets are suppressed R_{AA}, R_{CP} < 1
 - Ratio of jet cross-sections in HI collisions consistent with vacuum case
 - Hadron-jet analysis allows for a larger R
 - Compatible with no energy redistribution within R=0.5
- CNM do not play a large role for jet observables \Rightarrow R_{pPb} = 1
 - k_T is in agreement with the vacuum case
 - Good baseline for future 5.5 TeV Pb-Pb collisions!
- New insight into the reaction dynamics from LHC
 - ridges in high-multiplicity pp and p-Pb collisions
 - mass-splitting of v2