Quarkonium production in heavy-ion collisions from CMS

Hyunchul Kim 김현철 (Korea University) *for the CMS Collaboration*

The 2013-11 Heavy Ion Meeting Inha University, Incheon, Republic of Korea, Nov 2nd, 2013

Contents

- Motivation of the quarkonium production study
- Muon reconstruction in CMS
- Experimental results (decayed to dimuon)
 - Charmonia in PbPb collisions
 - prompt J/ ψ
 - non-prompt J/ ψ
 - ψ(2S)
 - Bottomonia in PbPb collisions

Bottomonia in pPb collisions

- Summary
- More information :

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Theoretical motivation

From Matsui & Satz PLB 178 (1986) 416

- Before Quark-Gluon Plasma, heavy quarks (charm, bottom) are produced.
- heavy quark + anti heavy quark \rightarrow quarkonium
- In QGP, we expect the melting of quarkonia caused by Debye screening
- Use sequential melting of the quarkonia states as the thermometer of the hot and dense matter

Experimental motivation

PHENIX, PRL 98 (2007) 232301 PRC 84 (2011) 054912 SPS from Scomparin @ QM06

- Nuclear Modification factor(R_{AA}) measurement
 - Formula :

- Indicator of suppression(R_{AA} <1) of enhancement(R_{AA} >1) of the particle in ion collision

Puzzles from SPS and RHIC

- Similar J/ψ suppression at SPS(< 20 GeV) and RHIC(200 GeV)
- $R_{AA}(forward) < R_{AA}(mid)$
 - Suppression does not increase with local energy density
- Possible answers
 - regeneration?
 - cold nuclear matter effects?

• Now LHC is giving us the hint

- higher energy
 - PbPb@2.76 TeV, pPb@5.02 TeV
- higher luminosity
- more charm \rightarrow possible to recombination
- new probe : Υ

Summary of ion physics run from LHC

- Pb ion-Pb ion collisions (2010, 2011 about one month/year)
 - Beam Energy : 2.76 TeV/nucleon pair
 - Integrated luminosity
 - 2010 : 7.28 μb⁻¹
 - 2011 : 157.6 μb⁻¹ recorded
- proton-Pb ion collisions (2013. Jan. ~ Feb.)
 - Beam Energy : 5.02 TeV/nucleon
 - proton : 4 TeV, Pb ion : 1.58 TeV
 - Asymmetry collision, boosted to proton forward direction
 - Integrated luminosity : 31 nb⁻¹
 - Change beam circulation
 - 1st (Beam1:proton, Beam2:Pb ion) collision
 - Jan. 20th ~ 30th
 - 2nd (Beam1:Pb ion, Beam2:proton) collision
 - Feb. 2nd ~ 10th
- proton-proton collisions (2011 Mar., 2013. Feb. 11th ~ 14th)
 - For the reference to PbPb data and partially to pPb data
 - Beam energy : 2.76 TeV/proton
 - Integrated luminosity
 - 2011 : 231 nb⁻¹ (equivalent to 2010 PbPb data)
 - 2013 : 5.41 pb⁻¹ (equivalent to 2011 PbPb data)

CMS muon reconstruction

- Global muons reconstructed with information from inner tracker and muon stations, with additional quality cut
- For pPb analysis, use tracker muons like pp group analysis

muon station

Quarkonium decayed to dimuon

Prompt J/ ψ R_{AA} : centrality dependence

CMS-PAS HIN-12-014

Rapidity dependence

p_T dependence

- Suppressed by factor 5 in most central collision
- Left : no strong dependence on rapidity at higher p_T region
- Right : at forward rapidity region, lower $p_T J/\psi$ is slightly less suppressed in most central case. 8

non-prompt J/ ψ R_{AA} : centrality dependence

CMS-PAS HIN-12-014

Rapidity dependence

p_T dependence

- Left : In all rapidity bins at high $p_{\rm T}$ region, centrality dependent suppression is shown.
- Right : In the forward region, lower $p_T J/\psi$ has strong centrality dependence and less suppressed than high $p_T J/\psi$

b-quark R_{AA} compared with other particles

CMS Highlights from Gunther Roland@QM12

- Directly measuring the b-quark energy loss in the medium
- b-quark is suppressed distinctly

ALICE : E.Bruna's slide@SQM2013 CMS : CMS-PAS HIN-12-014

ψ (2S) double ratios and R_{AA} : centrality dependence

Y(nS)' s mass distributions

- Ratios not corrected for acceptance and efficiency.
- In PbPb, the excited states suppressed relative to the ground state.

PRL 109 (2012) 222301

Y (nS) / Y (1S) Double ratio

Υ(2S) / Υ(1S)

Hyunchul Kim

- Measured Y(2S) double ratio vs. centrality
 - centrality integrated:

 $\frac{N_{\Upsilon(2S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(2S)}/N_{\Upsilon(1S)}|_{\text{Pp}}} = 0.21 \pm 0.07 \text{(stat.)} \pm 0.02 \text{(syst.)}$

- no strong centrality dependence
- **Upper limit on Y(3S)**
 - peak at PbPb is hard to distinguish : set the upper limit
 - centrality integrated:

 $\frac{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} = 0.06 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.})$

< 0.17 at 95% C.L.

Ύ(nS) R_{AA}

Remark for pPb bottomonia analysis

- Because of asymmetry collision, for rapidity need to consider boosted shift (about 0.47)
- muon's η and dimuon's rapidity in lab CM frame(y_{CM}) in (-1.93,1.93) is selected.
 - for proton going to η : -2.4 < η < 1.47
 - for proton going to + η : -1.47 < η < 2.4
- Binning in 2 event-activity variables
 - corrected N_{track} in inner tracker ($|\eta|$ <2.4, pT>0.4 GeV/c)
 - raw transverse energy(E_T) measured in HF (4<| η |<5.2)

inner tracker

dimuon mass distributions from 2013 data

CMS-PAS HIN-13-003

16

- Signal extraction in pp, pPb and PbPb same procedure
 - Using unbinned maximum log likelihood fit
 - Signal : 3 Crystal-Ball functions (Gaussian with low-side tail regarding Final State Radiation)
 - Background : error function × exponential (all parameters were free)

Double ratio (Y(nS) / Y(1S))

 pPb/pp < 1

 hint of additional effects on the excited states compared to the ground state in pPb collisions with a significance < 3σ

- pPb/pp > PbPb/pp
 - suggestion of additional final effects that affect more the excited states than the ground state

CMS-PAS HIN-13-003

Inha University

Single ratio (Y(nS) / Y(1S))

- pPb > PbPb with non-overlapped error bar
 - hint the presence of additional effects on excited states compared to ground state

CMS-PAS HIN-13-003

18

Y(nS)/Y(1S) vs event activity variables

CMS-PAS HIN-13-003

19

- E_T dependence All the single ratios in PbPb are below points in pPb within huge uncertainties in PbPb.
- Within uncertainties(bigger in PbPb), single ratios in all cases show the weaker dependence on E_{T}

Y(nS)/Y(1S) vs event activity variables

 $\begin{array}{c} \textbf{N}_{tracks} \text{ dependence} \\ \text{All the single ratios in PbPb are} \\ \text{below points in pPb within huge} \\ \text{uncertainties.(like E}_{T} \text{ in HF case)} \end{array}$

Within uncertainties, single ratios in pp and pPb cases show the significant decreasing dependence on N_{tracks}

- In PbPb is expected, but in pp is not expected(we expected flat on N_{tracks})
- Two possibilities of interpretation
 - Y affects the multiplicity?
 - the multiplicity affects the Y?

20

Y(nS)/Y(1S) vs event activity variables

• Y affects the multiplicity?

- N_{tracks} in Y(1S) events N_{tracks} in Y(2S) or 3S) events = \sim 2 extra tracks
 - Same in pPb and pp, despite of different average no. of tracks (10 in pp, 41 in pPb)
 - expected due to feed-down from higher states, such as $Y(2S) \rightarrow$ $Y(1S) + \pi^{+}\pi^{-}$
 - can affect to low N_{tracks} bin
- the multiplicity affects the Y?
 - Y(2S or 3S) is more interacting with the surrounding environment than Y(1S)which is the most tightly bounded.

Self-normalized ratios Y(nS)/<Y(nS)>

- Left : all the points on the line with slope 1 despite of different collision conditions and average E_{T}
- Right : less coherent behavior, variation depend on species in large activity events
- more Y(nS) in event with more multiplicity in pp collisions can be interpreted as a sign of multi-parton interactions.
 CMS-PAS HIN-13-003

Summary

- Suppression of prompt and non-prompt J/ ψ in PbPb is observed, but for $\psi(2S)$ need more pp data.
- In PbPb collisions, sequential suppression of Y(nS) is shown.
- pPb data give us the hint of the additional effects on Y(2S,3S) than on Y(1S).
- Within uncertainties, Y(nS)/Y(1S) in pp and pPb cases show the significant decreasing dependence on N_{tracks.}
- Y(nS)/<Y(nS)> increasing with increasing N_{tracks} in pp, pPb and PbPb.

Stay tune to Hard Probes 2013

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

> November 4 - 8, 2013 Cape Town, South Africa

Hyunchul Kim

Quarkonia family

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E~[ext{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M~[{ m GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

H.Satz Slides from INT/Seattle June 18, 2009

Cartoon for Debye screening

CMS detector

Prompt, non-prompt J/ ψ signal extraction

Reconstruct µ⁺µ⁻ vertex

 $\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$

- Separation of prompt and non-prompt J/ ψ
 - by 2D simultaneous fit of µ⁺µ[−] mass and pseudo-proper decay length

Β

28

CMS-PAS HIN-12-014

J/ψ

J/ψ 's acceptance and efficiency

2011 MC PYTHIA+EvtGen: 0.860+0.002

15

ity

- 2011 Data: 0.915 + 0.004

0.2

0.1

-15

- 2011 MC PYTHIA+EvtGen: 0.860^{+0.002}

12 14 16

18

10

p^µ_τ (GeV/c)

0 2 F

0.1F

- Because of the magnetic field and energy loss (2~3 GeV) in the iron yoke, Global muons need minimum p_{μ} to reach the muon stations (3~5 GeV, depending on η)
- Limits J/ ψ acceptance
 - mid-rapidity: $p_{T, J/\psi}$ >6.5 GeV/c

- forward:
$$p_{T, J/\psi} > 3 \text{ GeV/c}$$

- Efficiencies are evaluated with MC
- Crosschecked with tag-and-probe method in data and MC

b fraction of J/ ψ production

$\psi(2S)$ in pp & PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

Lower-p_T, forward region (p_T>3 GeV/c and 1.6<|y|<2.4)

PAS CMS-HIN-12-007

$\psi(2S)$ in pp & PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

High-p_T, mid-rapidity region (p_T >6.5 GeV/c and |y|<1.6)

PAS CMS-HIN-12-007

$\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} : theory comparison

 $\Upsilon(1S)$ and $\Upsilon(2S)$ results are consistent with the theoretical model within uncertainties

<N_{coll}> from different methods agree well

Defining centrality from different methods:

- Slicing multiplicity and ΣHF E_T |η|>4 means selecting very different events (e.g. 0-10% in the plots), but <N_{coll}> are the same
- The real difficulties of centrality determination are about how to define centrality in real data (which η range to use?) for an analysis and study possible biases

Shengquan Tuo (Vanderbilt)

IS2013, Sep 10, Illa Da Toxa, Spain

