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A Little Bang in the STAR Detector:

Gyulassy RBRC/BNL 12/16/04 11
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Big Bang vs. Little Bang

Similarities: Hubble-like expansion, expansion-driven dynamical freeze-out

chemical freeze-out (nucleo-/hadrosynthesis) before thermal freeze-out (CMB,

hadron pT -spectra)

initial-state quantum fluctuations imprinted on final state

Differences: Expansion rates differ by 18 orders of magnitude

Expansion in 3d, not 4d; driven by pressure gradients, not gravity

Time scales measured in fm/c rather than billions of years

Distances measured in fm rather than light years

“Heavy-Ion Standard Model” still under construction =⇒ this talk
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Collision of two Lorentz contracted gold nuclei 

Relativistic Nucleus-Nucleus Collisions 

Animation: P. Sorensen 
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7 

Relativistic Nucleus-Nucleus Collisions 

Collision of two Lorentz contracted gold nuclei 

Produced fireball is ~10-14 meters across 

and lives for ~5x10-23 seconds 

Animation: P. Sorensen 
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P. Sorensen – NSAC Subcommittee 2012  

WMAP HIC 

Credit: NASA 

The Universe
 HIC
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The Big Bang vs the Little Bangs 
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Big vs. Little Bang: The fluctuation power spectrum
Mishra, Mohapatra, Saumia, Srivastava, PRC77 (2008) 064902 and C81 (2010) 034903

Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71

Big Bang temperature power spectrum (Planck 2013)
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Higher flow harmonics get suppressed by shear viscosity

A detailed study of fluctuations is a powerful
discriminator between models!
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The landscape of QCD matter: The future is now

Probes:

• Collective flow

• Jet modification
and quenching

• Thermal electro-
magnetic radiation

• Critical fluctuations

• . . .
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The University of Queensland pitch drop experiment

SI unit for shear viscosity:

[η] = Poise = kg/(m · s)

ηwater = O(10−2Poise)

ηpitch ≈ 2.3×1011 ηwater = O(109Poise)

(∼ one drop per decade –
next drop expected to fall in 2013!)

ηQGP ≈ 103 ηpitch = O(1012Poise)

U. Heinz HIM 2013, 6/28/2013 16(65)



A measure of fluidity

η

e+p
× ∂·u =

Γexp

Γsound

∼
η

s

1

Tτ

The specific viscosity η/s (s=entropy density) is conceptually
related to the “kinematic viscosity” η/n in Navier-Stokes theory
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QGP – the most perfectly fluid liquid ever observed!

AdS/CFT universal lower viscosity bound conjecture:
η

s
>
∼

h̄

4πkB

Kovtun, Son, Starinets, PRL 94 (2005) 111601
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Will show that the QGP viscosity is close to this bound!
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Azimuthal Distributions: x-space 

2 2 

Are particles emitted at random angles? 

No. They remember the initial geometry! 
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Azimuthal Distributions: p-space 

3 3 

Are particles emitted at random angles? 

No. They remember the initial geometry! 

x
p

y
p

0.25
0.5

0.75
1.0

1.5

 (GeV/c)
T

p

00000000000000000000000000000000000000000000000000000000000000000000000000000000000..................2222222222222222222222222222222222222222222222222222222222222222222222222222222222222225555555555555555555555555555555555555555555555555555550000000000000000000000000 255522222222225555555555555555555550000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000.0000000000000000000.000000000000000000000000000000000

U. Heinz HIM 2013, 6/28/2013 21(65)



Each Little Bang evolves differently!

Density evolution of a single b=8 fm Au+Au collision at RHIC, with IP-Glasma initial conditions,

Glasma evolution to τ =0.2 fm/c followed by (3+1)-d viscous hydrodynamic evolution with MUSIC

using η/s=0.12= 1.5/(4π)

Schenke, Tribedy, Venugopalan, PRL 108 (2012) 252301:
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Event-by-event shape and flow fluctuations rule!
(Alver and Roland, PRC81 (2010) 054905)

• Each event has a different initial shape and density distribution, characterized by different set of

harmonic eccentricity coefficients εn

• Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow

coefficients vn and flow angles ψn

• At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects

(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)
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How anisotropic flow is measured:

Definition of flow coefficients:

dN (i)

dy pTdpT dφp
(b) =

dN (i)

dy pTdpT
(b)

(

1 + 2

∞
∑

n=1

v(i)
n (y, pT ; b) cos

(

n(φp−Ψ(i)
n )
)

)

.

Define event average {. . .}, ensemble average 〈. . .〉

Flow coefficients vn typically extracted from azimuthal correlations (k-particle cumu-
lants). E.g. k = 2, 4:

cn{2} = 〈{eni(φ1−φ2)}〉 = 〈{eni(φ1−ψn)}{e−ni(φ2−ψn)}+ δ2〉 = 〈v2n + δ2〉
cn{4} = 〈{eni(φ1+φ2−φ3−φ4)}〉 − 2〈{eni(φ1−φ2)}〉 = 〈−v4n + δ4〉

vn is correlated with the event plane while δn is not (“non-flow”). δ2 ∼ 1/M , δ4 ∼ 1/M3.
4th-order cumulant is free of 2-particle non-flow correlations.

These measures are affected by event-by-event flow fluctuations:

〈v22〉 = 〈v2〉
2 + σ2, 〈v42〉 = 〈v2〉

4 + 6σ2〈v2〉
2

vn{k} denotes the value of vn extracted from the kth-order cumulant:

v2{2} =
√

〈v22〉, v2{4} = 4
√

2〈v22〉
2 − 〈v42〉
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Panta rhei: “soft ridge”=“Mach cone”=flow!
ATLAS (J. Jia), Quark Matter 2011 ALICE (J. Grosse-Oetringhaus), QM11

• anisotropic flow coefficients vn and flow angles ψn correlated over large rapidity range!

M.Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely

generated by hydrodynamic flow.

• in the 1% most central collisions v3>v2
=⇒ prominent “Mach cone”-like structure!

=⇒ event-by-event eccentricity fluctuations dominate!
U. Heinz HIM 2013, 6/28/2013 25(65)



Event-by-event shape and flow fluctuations rule!

ALICE (A. Bilandzic) Quark Matter 2011

• in the 1% most central collisions v3>v2 =⇒ prominent “Mach cone”-like structure!

• triangular flow angle uncorrelated with reaction plane and elliptic flow angles

=⇒ due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the

most central collisions
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Viscous relativistic hydrodynamics (Israel & Stewart 1979)

Include shear viscosity η, neglect bulk viscosity (massless partons) and heat conduction
(µB ≈ 0); solve

∂µ T
µν = 0

with modified energy momentum tensor

Tµν(x) =
(

e(x)+p(x)
)

uµ(x)uν(x)− gµνp(x)+πµν.

πµν = traceless viscous pressure tensor which relaxes locally to 2η times the shear
tensor ∇〈µuν〉 on a microscopic kinetic time scale τπ:

Dπµν = − 1
τπ

(

πµν − 2η∇〈µuν〉
)

+ . . .

where D ≡ uµ∂µ is the time derivative in the local rest frame.

Kinetic theory relates η and τπ, but for a strongly coupled QGP neither η nor this
relation are known =⇒ treat η and τπ as independent phenomenological parameters.

For consistency: τπθ ≪ 1 (θ = ∂µuµ= local expansion rate).
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Converting initial shape

fluctuations into

final flow anisotropies –

the QGP shear viscosity

(η/s)QGP
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How to use elliptic flow for measuring (η/s)QGP

Hydrodynamics converts
spatial deformation of initial state =⇒
momentum anisotropy of final state,
through anisotropic pressure gradients

Shear viscosity degrades conversion efficiency

εx=
〈〈y2−x2〉〉
〈〈y2+x2〉〉 =⇒ εp=

〈Txx−T yy〉
〈Txx+T yy〉

of the fluid; the suppression of εp is monoto-
nically related to η/s. 0 1 2 3 4 5 6 7
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The observable that is most directly related to the total hydrodynamic momentum
anisotropy εp is the total (pT -integrated) charged hadron elliptic flow vch

2 :

εp=
〈T xx−T yy〉

〈T xx+T yy〉
⇐⇒

∑

i

∫

pTdpT
∫

dφp p
2
T cos(2φp)

dNi
dypTdpTdφp

∑

i

∫

pTdpT
∫

dφp p2T
dNi

dypTdpTdφp

⇐⇒ vch2
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How to use elliptic flow for measuring (η/s)QGP (ctd.)

• If εp saturates before hadronization (e.g. in PbPb@LHC (?))

⇒ vch2 ≈ not affected by details of hadronic rescattering below Tc

but: v
(i)
2 (pT ),

dNi
dyd2pT

change during hadronic phase (addl. radial flow!), and the-

se changes depend on details of the hadronic dynamics (chemical composition etc.)

⇒ v2(pT ) of a single particle species not a good starting point for extracting η/s

• If εp does not saturate before hadronization (e.g. AuAu@RHIC), dissipative hadro-
nic dynamics affects not only the distribution of εp over hadronic species and in pT ,
but even the final value of εp itself (from which we want to get η/s)

⇒ need hybrid code that couples viscous hydrodynamic evolution of QGP to realistic
microscopic dynamics of late-stage hadron gas phase

⇒ VISHNU (“Viscous Israel-Stewart Hydrodynamics ’n’ UrQMD”)

(Song, Bass, UH, PRC83 (2011) 024912) Note: this paper shows that UrQMD 6= viscous hydro!
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Extraction of (η/s)QGP from AuAu@RHIC
H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRL106 (2011) 192301
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• All shown theoretical curves correspond to parameter sets that correctly

describe centrality dependence of charged hadron production as well as
pT -spectra of charged hadrons, pions and protons at all centralities

• vch2 /εx vs. (1/S)(dNch/dy) is “universal”, i.e. depends only on
η/s but (in good approximation) not on initial-state model (Glauber

vs. KLN, optical vs. MC, RP vs. PP average, etc.)

• dominant source of uncertainty: εGl
x vs. εKLN

x −→
• smaller effects: early flow → increases

v2
ε by ∼ few% → larger η/s

bulk viscosity → affects vch2 (pT ), but ≈ not vch2

Zhi Qiu, UH, PRC84 (2011) 024911
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Global description of AuAu@RHIC spectra and v2

VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)
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(η/s)QGP = 0.08 for MC-Glauber and (η/s)QGP = 0.16 for MC-KLN work well
for charged hadron, pion and proton spectra and v2(pT ) at all collision centralities
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Successful prediction of v2(pT) for identified hadrons
in PbPb@LHC

Data: ALICE, Quark Matter 2011 Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)

Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions

Adding the hadronic cascade (VISHNU) helps:
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v2(pT) in PbPb@LHC: ALICE vs. VISHNU
Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, (η/s)QGP=0.2)

Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, (η/s)QGP=0.16)
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VISHNU yields correct magnitude and centrality dependence of v2(pT ) for pions, kaons and protons!

Same (η/s)QGP =0.16 (for MC-KLN) at RHIC and LHC!
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Successful prediction of v2(pT) for identified hadrons
in PbPb@LHC (II)

Data: ALICE, Quark Matter 2012 Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)

Radial flow pushes v2 for heavier hadrons to larger pT
Theory curves are true predictions, without any parameter adjustment
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Back to the
“elephant in the room”:

How to eliminate the large
model uncertainty

in the initial eccentricity?
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Two observations:

I. Shear viscosity suppresses higher flow harmonics more strongly

Alver et al., PRC82 (2010) 034913

(averaged initial conditions)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.08  0.16

v n
/ε

n

η/s

v2/ε2
v3/ε3
v4/ε4
v5/ε5

Schenke et al., arXiv:1109.6289

(event-by-event hydro)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5  6
v n

(v
is

co
us

)/
v n

(id
ea

l)

n

20-30%
 vn(η/s=0.08)/vn(ideal)
 vn(η/s=0.16)/vn(ideal) 

=⇒ Idea: Use simultaneous analysis of elliptic and triangular flow to constrain initial state models

(see also Bhalerao, Luzum Ollitrault, PRC 84 (2011) 034910)
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Two observations:

II. ε3 is ≈ model independent
Zhi Qiu, UH, PRC84 (2011) 024911
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Initial eccentricities εn and angles ψn:

εne
inψn = −

∫

rdrdφ r2einφ e(r,φ)
∫

rdrdφ r2 e(r,φ)

• MC-KLN has larger ε2 and ε4, but

similar ε5 and almost identical ε3 as
MC-Glauber

• Angles of ε2 and ε4 are correlated

with reaction plane by geometry,
whereas those of ε3 and ε5 are

random (purely fluctuation-driven)

• While v4 and v5 have mode-coupling
contributions from ε2, v3 is

almost pure response to ε3 and
v3/ε3 ≈ const. over a wide range of

centralities

=⇒ Idea: Use total charged hadron vch3 to determine (η/s)QGP,

then check vch2 to distinguish between MC-KLN and MC-Glauber!
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Combined v2 & v3 analysis: η/s is small!
Zhi Qiu, C. Shen, UH, PLB707 (2012) 151 and QM2012 (e-by-e VISH2+1)
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MC-Glb. η/s = 0.08 (d)
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• Both MC-KLN with η/s=0.2 and MC-Glauber with η/s=0.08 give very good
description of v2/ε2 at all centralities.

• Only η/s=0.08 (with MC-Glauber initial conditions) describes v3/ε3!
PHENIX, comparing to calculations by Alver et al. (PRC82 (2010) 034913), come to similar conclusions at RHIC energies

(Adare et al., arXiv:1105.3928, and Lacey et al., arXiv:1108.0457)

• Large v3 measured at RHIC and LHC requires small (η/s)QGP ≃ 1/(4π) unless
the fluctuations in these models are completely wrong and ε3 is really 50%
larger than these models predict!
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Sub-nucleonic fluctuations
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Adding sub-nucleonic quantum fluctuations
Schenke, Tribedy, Venugopalan, PRL108, 252301 (2012)

MC-Glauber
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Adding sub-nucleonic quantum fluctuations
Schenke, Tribedy, Venugopalan, PRL108, 252301 (2012)

MC-KLN
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Adding sub-nucleonic quantum fluctuations
Schenke, Tribedy, Venugopalan, PRL108, 252301 (2012)

IP-Glasma
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Towards a Standard Model of the Little Bang 

13 

B. Schenke: QM2012 

With inclusion of sub-nucleonic quantum fluctuations 

and pre-equilbrium dynamics of gluon fields: 

 → outstanding agreement between data and model 

Rapid convergence on a standard model of the Little Bang! 

Perfect liquidity reveals in the final state initial-state gluon field correlations 

of size 1/Qs (sub-hadronic)! 

Schenke, Tribedy, Venugopalan, 
Phys.Rev.Lett. 108:25231 (2012)  
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What We Don!t Know 

14 

Model doesn’t distinguish between a constant η/s of 0.2 or a 
temperature dependent η/s with a minimum of 1/4π 

 

Need both RHIC and LHC to sort this out! 

B. Schenke: QM2012 
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Other successes of the Little Bang Standard Model
Gale, Jeon, Schenke, Tribedy, Venugopalan, arXiv:1209.6330 (PRL 2012)
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• Model describes RHIC data with lower effective specific shear viscosity η/s = 0.12

• In contrast to MC-Glauber and MC-KLN, IP-Sat initial conditions correctly reproduce the final flow

fluctuation spectrum, generated from initial shape fluctuations by viscous hydrodynamics
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The Little Bang fluctuation power spectrum:
initial vs. final

Little Bang density power spectra
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Higher flow harmonics get suppressed by shear viscosity

Neither MC-Glb nor MC-KLN gives the correct initial power spectrum! † R.I.P.

A detailed study of fluctuations is a powerful
discriminator between models!
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Conclusions
• Quark-Gluon Plasma is by far the hottest and densest form of matter ever observed in the

laboratory. Its properties and interactions are controlled by QCD, not QED.

• It is a liquid with almost perfect fluidity. Its specific shear viscosity at RHIC and LHC energies is

(η/s)QGP(Tc<T<2Tc) =
2

4π
± 50%

This is significantly below that of any other known real fluid.

Precision comparison of harmonic flow coefficients at RHIC and LHC provides first serious

indications for a moderate increase of the specific QGP shear viscosity between 2Tc and 3Tc.

• Viscous relativistic hydrodynamics provides a quantitative description of QGP evolution.

• By coupling viscous fluid dynamics for the QGP stage to microscopic evolution models of the

dense early pre-equilibrium and dilute late hadronic freeze-out stages, a complete dynamical

description of the strongly interacting matter created in ultra-relativistic heavy-ion collisions

has been achieved. This dynamical theory has made successful predictions for the first Pb+Pb

collisions at the LHC that were quantitatively precise and non-trivial (in the sense that they

disagreed with other predictions that were falsified by the data).

• The Color Glass Condensate theory (IP-Sat model) appears to give the correct spectrum of

initial-state gluon field fluctuations.

We are rapidly converging on the Standard Model for the Little Bang
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Single event anisotropic flow coefficients

In a single event, the specific initial density profile results in a set of complex, y- and pT -dependent flow

coefficients (we’ll suppress the y-dependence):

Vn = vne
inΨn :=

∫

pTdpTdφ e
inφ dN

dypT dpT dφ
∫

pTdpTdφ
dN

dypT dpT dφ

≡ {einφ},

Vn(pT ) = vn(pT )e
inΨn(pT ) :=

∫

dφ einφ dN
dypT dpT dφ

∫

dφ dN
dypT dpT dφ

≡ {einφ}pT .

Together with the azimuthally averaged spectrum, these completely characterize the measurable single-
particle information for that event:

dN

dy dφ
=

1

2π

dN

dy

(

1 + 2

∞
∑

n=1

vn cos[n(φ− Ψn)]

)

,

dN

dy pT dpT dφ
=

1

2π

dN

dy pT dpT

(

1 + 2
∞
∑

n=1

vn(pT ) cos[n(φ− Ψn(pT ))]

)

.

• Both the magnitude vn and the direction Ψn (“flow angle”) depend on pT .
• vn, Ψn, vn(pT ), Ψn(pT ) all fluctuate from event to event.
• Ψn(pT )−Ψn fluctuates from event to event.
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Higher order event plane correlations in PbPb@LHC
Data: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu, UH, PLB 717 (2012) 261 (VISH2+1)
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ATLAS dataNpart

VISH2+1 reproduces qualitatively the centrality dependence of all measured event-plane correlations
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Higher order event plane correlations in PbPb@LHC
Zhi Qiu, UH, PLB 717 (2012) 261
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Initial-state participant plane correlations disagree with final-state flow-plane correlations

=⇒ Nonlinear mode coupling through hydrodynamic evolution essential to describe the data!
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Higher order event plane correlations in PbPb@LHC
Data: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu, UH, PLB 717 (2012) 261 (VISH2+1)
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VISH2+1 reproduces qualitatively the centrality dependence of all measured event-plane correlations
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Higher order event plane correlations in PbPb@LHC
Zhi Qiu, UH, PLB 717 (2012) 261
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Initial-state participant plane correlations disagree with final-state flow-plane correlations

=⇒ Nonlinear mode coupling through hydrodynamic evolution essential to describe the data!
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Single event anisotropic flow coefficients

In a single event, the specific initial density profile results in a set of complex, y- and pT -dependent flow

coefficients (we’ll suppress the y-dependence):

Vn = vne
inΨn :=

∫

pTdpTdφ e
inφ dN

dypT dpT dφ
∫

pTdpTdφ
dN

dypT dpT dφ

≡ {einφ},

Vn(pT ) = vn(pT )e
inΨn(pT ) :=

∫

dφ einφ dN
dypT dpT dφ

∫

dφ dN
dypT dpT dφ

≡ {einφ}pT .

Together with the azimuthally averaged spectrum, these completely characterize the measurable single-
particle information for that event:

dN

dy dφ
=

1

2π

dN

dy

(

1 + 2

∞
∑

n=1

vn cos[n(φ− Ψn)]

)

,

dN

dy pT dpT dφ
=

1

2π

dN

dy pT dpT

(

1 + 2
∞
∑

n=1

vn(pT ) cos[n(φ− Ψn(pT ))]

)

.

• Both the magnitude vn and the direction Ψn (“flow angle”) depend on pT .
• vn, Ψn, vn(pT ), Ψn(pT ) all fluctuate from event to event.
• Ψn(pT )−Ψn fluctuates from event to event.
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pT -dependent flow angles and their fluctuations
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Elliptic and triangular flow comparison (I)
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In central collisions, angular fluctuations suppress vn{EP}(pT ) and vn{2}(pT ) below the mean and

rms flows at low pT (clearly visible for protons)

This effect disappears in peripheral collisions, but a similar effect then takes over at higher pT , for both

pions and protons.
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Elliptic and triangular flow comparison (II): vn ratios
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Except for where the numerator or denominator goes through zero, for central collisions these ratios

are equal to 2/
√
π≈ 1.13, independent of pT . Expected if flow angles are randomly oriented (Bessel-

Gaussian distribution for vn, see Voloshin et al., PLB 659, 537 (2008)).

Not true in peripheral collisions, especially not for v2 (Gardim et al., 1209.2323)

That this works even for vn{2}/vn{EP} suggests an approximate factorization of angular fluctuation

effects!
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Elliptic and triangular flow comparison (III): vn ratios
Central collisions:
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– The angular fluctuation factor 〈cos[n(Ψn(pT)−Ψn)]〉 completely dominates the pT -dependence of

these ratios!

– Angular fluctuations have similar effect as poor event-plane resolution: they reduce vn.

– Angular fluctuations are effective both at low and high pT , but not at intermediate pT .

– The window for seeing flow angle fluctuation effects at low pT is smaller for pions than for protons.
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Elliptic and triangular flow comparison (IV): vn ratios

Peripheral collisions:
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The window for seeing flow angle fluctuation effects at low pT closes in peripheral
collisions.
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Flow angle fluctuation effects for higher order vn(pT)

Central collisions; solid: 〈vn(pT )〉; dashed: vn{EP}(pT ):
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As harmonic order n increases, suppression of vn{EP}(pT ) (or vn{2}(pT )) from flow
angle fluctuations for protons gets somewhat weaker but persists to larger pT .
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Test of factorization of two-particle spectra
Factorization Vn∆(pT1, pT2) :=

〈

{cos[n(φ1−φ2)]}pT1pT2

〉

≈ “vn(pT1) × vn(pT2)“ was checked

experimentally as a test of hydrodynamic behavior, and found to hold to good approximation.

Gardim et al. (1211.0989) pointed out that event-by-event fluctuations break this factorization even if

2-particle correlations are exclusively due to flow.

They proposed to study the following ratio:

rn(pT1, pT2) :=
Vn∆(pT1, pT2)

√

Vn∆(pT1, pT1)Vn∆(pT2, pT2)
=

〈vn(pT1)vn(pT2)cos[n(Ψn(pT1)−Ψn(pT2))]〉
vn[2](pT1)vn[2](pT2)

.

Even in the absence of flow angle fluctuations, this ratio is < 1 due to vn fluctuations (Schwarz

inequality), except for pT1 = pT2.

But it additionally depends on flow angle fluctuations.

To assess what share of the deviation from 1 is due to flow angle fluctuations, we can compare with

r̃n(pT1, pT2) :=
〈vn(pT1)vn(pT2)cos[n(Ψn(pT1)−Ψn(pT2))]〉

〈vn(pT1)vn(pT2)〉

which deviates from 1 only due to flow angle fluctuations. Again, this ratio approaches 1 for pT1 = pT2.

Gardim et al. studied rn for ideal hydro; we have studied rn and r̃n for viscous hydro.

U. Heinz HIM 2013, 6/28/2013 61(65)



Breaking of factorization by e-by-e fluctuations (I)

Monte Carlo Glauber initial conditions, η/s=0.08=1/(4π):
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More than half of the factorization breaking effects are due to flow angle fluctuations.

In central collisions, η/s=0.08 appears to overpredict the breaking of factorization (consistent with

Gardim et al. who saw still larger effects for ideal hydro).

Factorization breaking effects appear to be larger for fluctuation-dominated flow harmonics.
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Breaking of factorization by e-by-e fluctuations (II)

Monte Carlo KLN initial conditions, η/s=0.2=2.5/(4π):
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In central collisions, factorization-breaking effects decrease with increasing η/s.

In peripheral collisions, larger η/s appears to cause a larger breaking of factorization, mostly due to flow

angle fluctuations.

Data may indicate slight preference for larger η/s value, but more experimental precision and more

detailed theoretical studies are needed to settle this. Analysis of ATLAS data in progress.
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Conclusions

• Both the magnitudes vn and the flow anglesΨn depend on pT and fluctuate from event to event.

• In each event, the “pT -averaged” (total-event) flow angles Ψn are identical for all particle

species, but their pT distribution differs from species to species.

• The mean vn values and their pT -dependence at RHIC and LHC have already been shown to

put useful constraints on the QGP shear viscosity and its temperature dependence (see next

talk by B. Schenke)

• The effects of vn and Ψn fluctuations can be separated experimentally by studying

different Vn measures based on two-particle correlations.

• Flow angle correlations are a powerful test of the hydrodynamic paradigm and will help to

further constrain the spectrum of initial-state fluctuations and QGP transport coefficients.

• Studying event-by-event fluctuations of the anisotropic flows vn and their flow angles Ψn

as functions of pT , as well as the correlations between different harmonic flows (both their

magnitudes and angles), provides a rich data base for identifying the “Standard Model of the

Little Bang”, by pinning down its initial fluctuation spectrum and its transport coefficients.
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