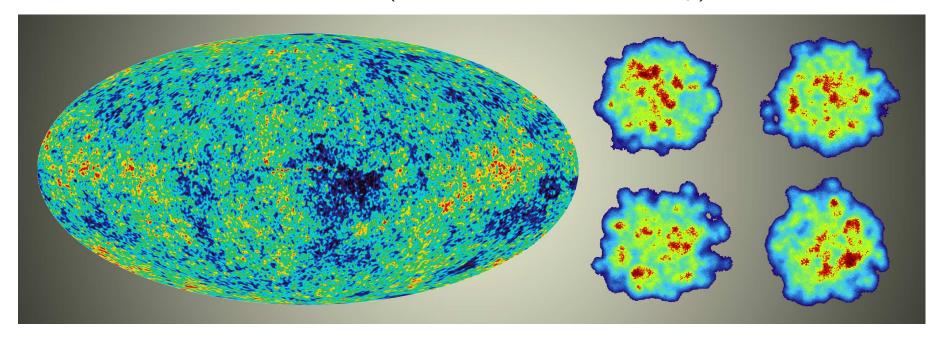
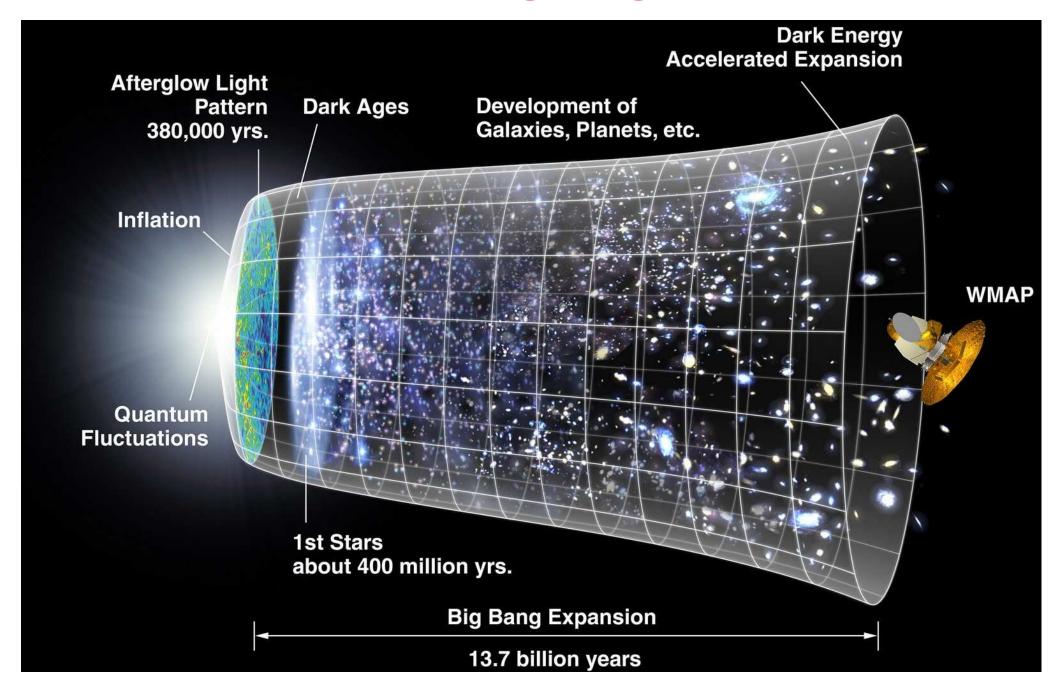
Towards the Little Bang Standard Model*

Ulrich Heinz (The Ohio State University)



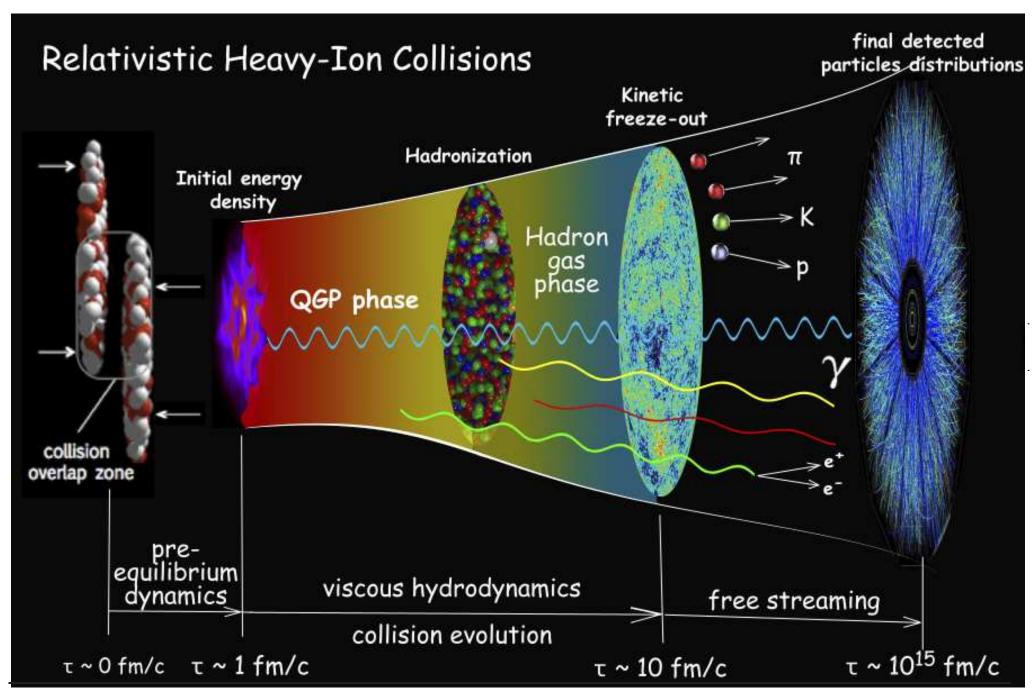
presented at: 2013 Heavy Ion Meeting Jeju National University, Korea, 28-29 June 2013

The Big Bang

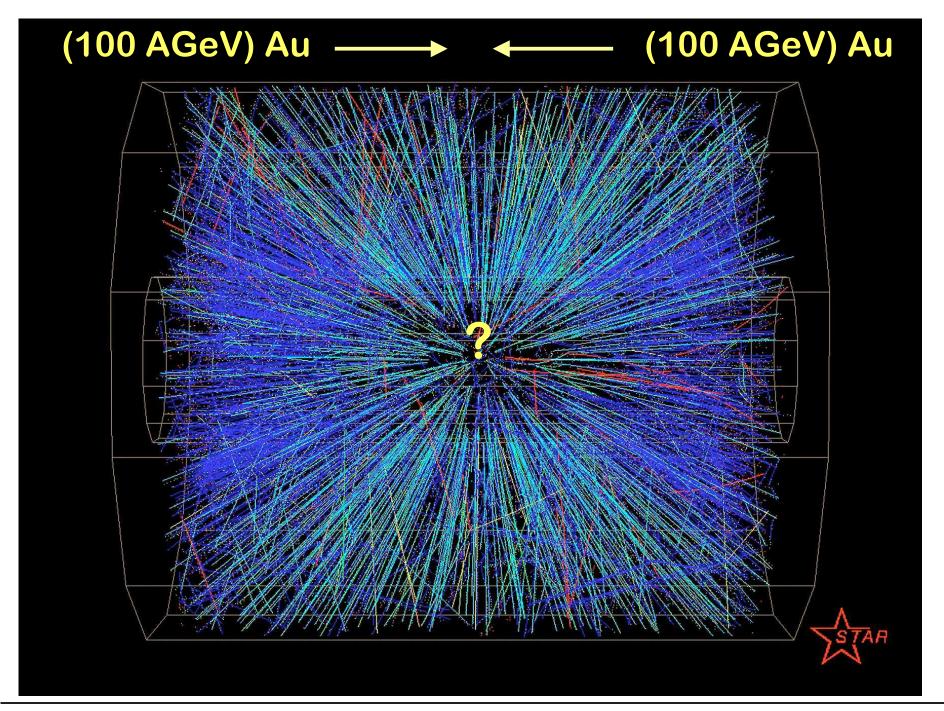


U. Heinz HIM 2013, 6/28/2013 1(65)

The Little Bang

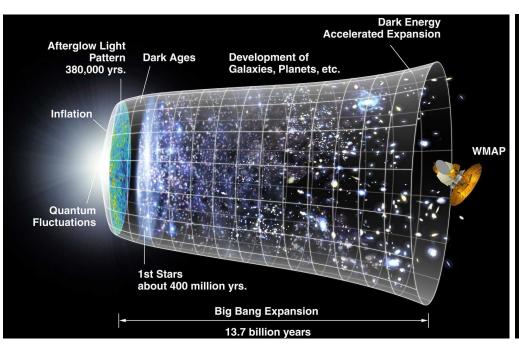


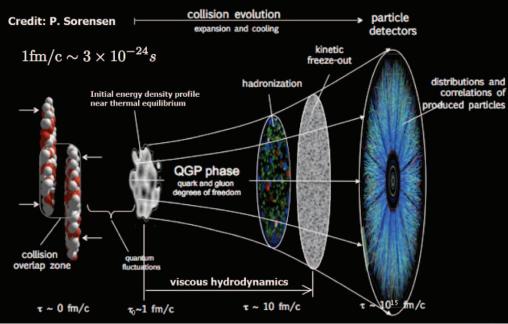
A Little Bang in the STAR Detector:



U. Heinz HIM 2013, 6/28/2013 3(65)

Big Bang vs. Little Bang



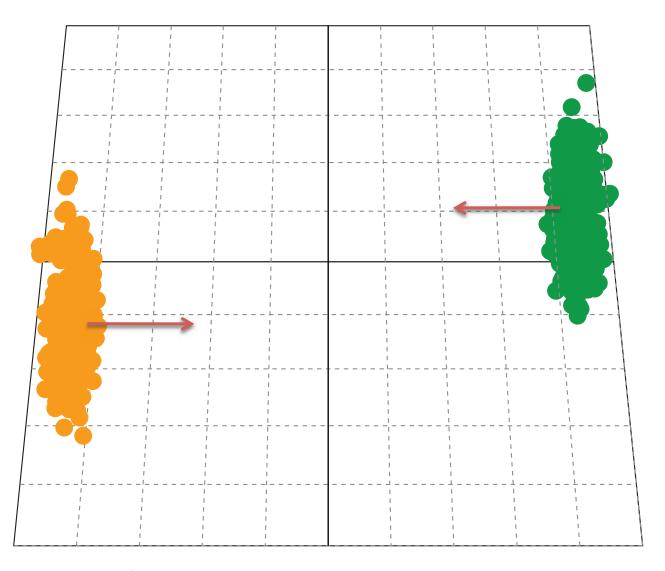


Similarities: Hubble-like expansion, expansion-driven dynamical freeze-out chemical freeze-out (nucleo-/hadrosynthesis) before thermal freeze-out (CMB, hadron p_T -spectra) initial-state quantum fluctuations imprinted on final state

Differences: Expansion rates differ by 18 orders of magnitude Expansion in 3d, not 4d; driven by pressure gradients, not gravity Time scales measured in fm/c rather than billions of years Distances measured in fm rather than light years "Heavy-Ion Standard Model" still under construction \Longrightarrow this talk

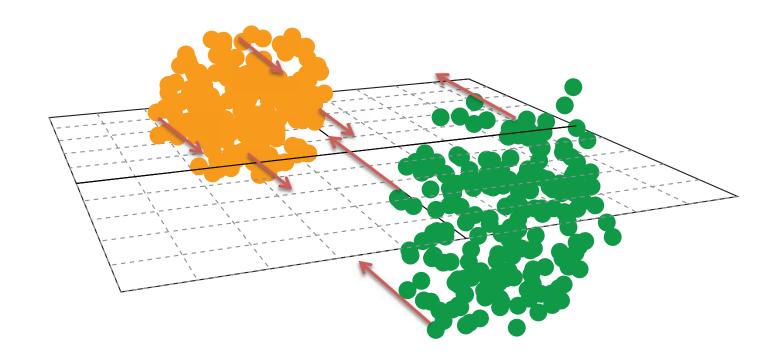
U. Heinz HIM 2013, 6/28/2013 4(65)

Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

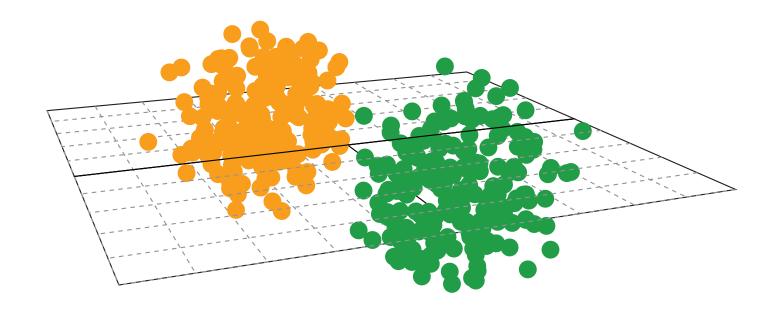
Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

U. Heinz HIM 2013, 6/28/2013 6(65)

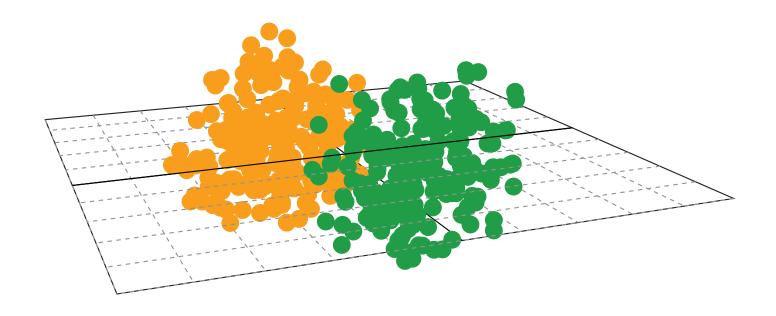
Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

U. Heinz HIM 2013, 6/28/2013 7(65)

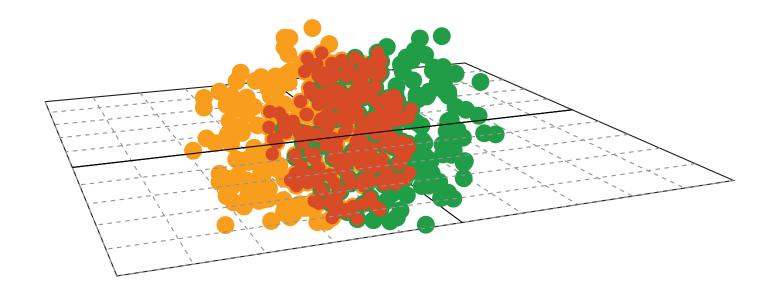
Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

U. Heinz HIM 2013, 6/28/2013 8(65)

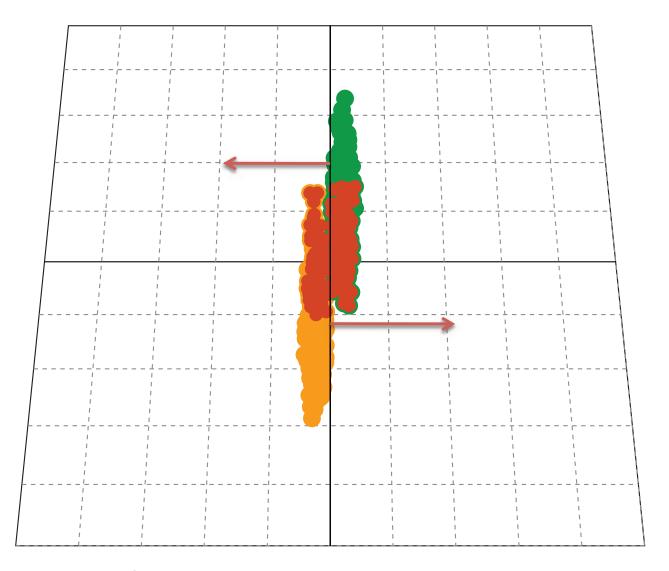
Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

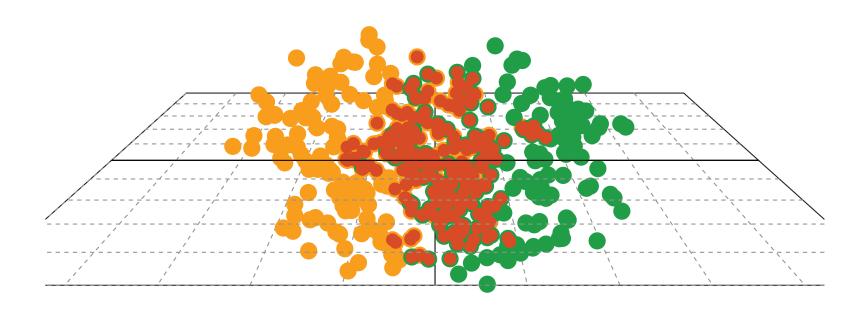
U. Heinz HIM 2013, 6/28/2013 9(65)

Animation: P. Sorensen



Collision of two Lorentz contracted gold nuclei

Animation: P. Sorensen

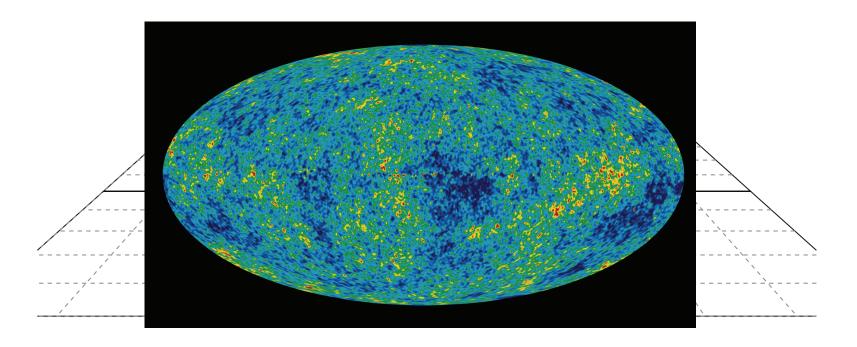


Produced fireball is ~10⁻¹⁴ meters across and lives for ~5x10⁻²³ seconds

Collision of two Lorentz contracted gold nuclei

U. Heinz HIM 2013, 6/28/2013 11(65)

Animation: P. Sorensen

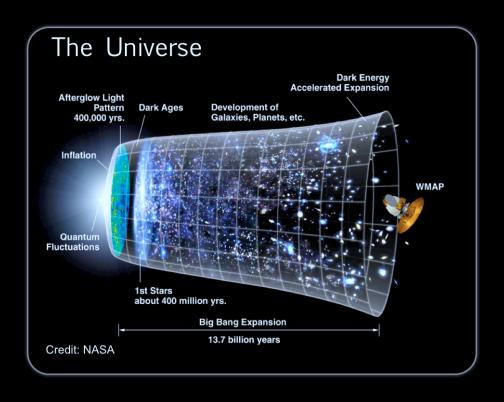


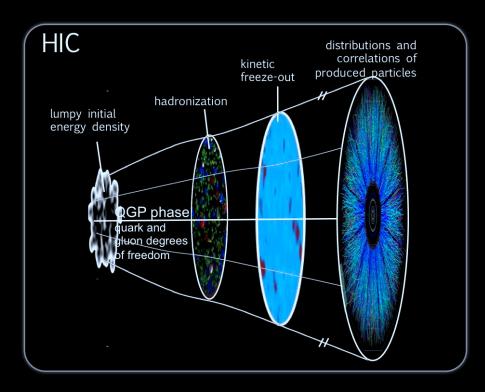
Produced fireball is ~10⁻¹⁴ meters across and lives for ~5x10⁻²³ seconds

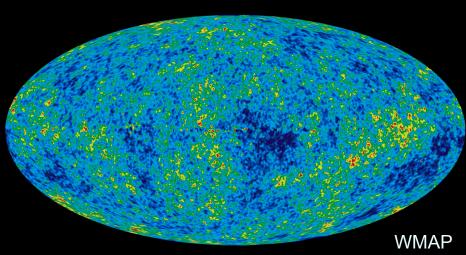
Collision of two Lorentz contracted gold nuclei

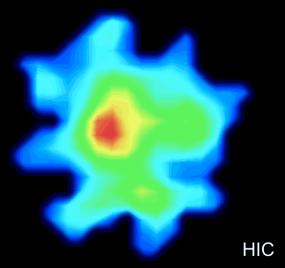
U. Heinz HIM 2013, 6/28/2013 12(65)

The Big Bang vs the Little Bangs





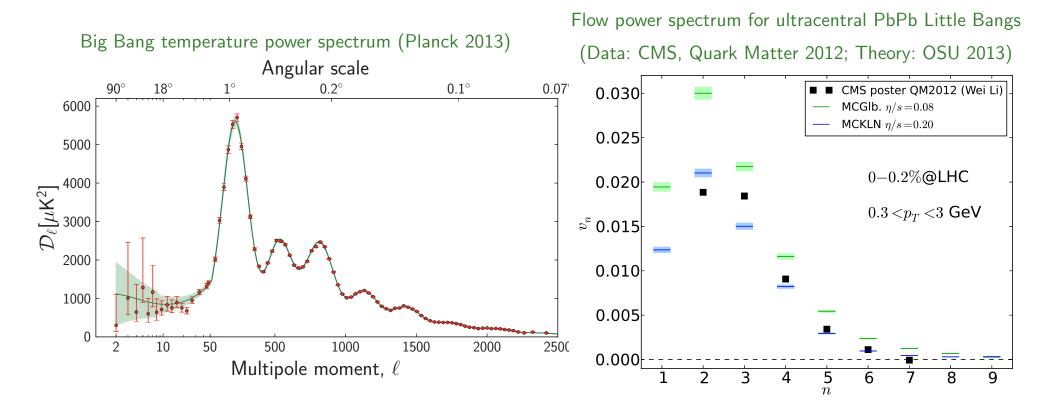




8

Big vs. Little Bang: The fluctuation power spectrum

Mishra, Mohapatra, Saumia, Srivastava, PRC77 (2008) 064902 and C81 (2010) 034903 Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71

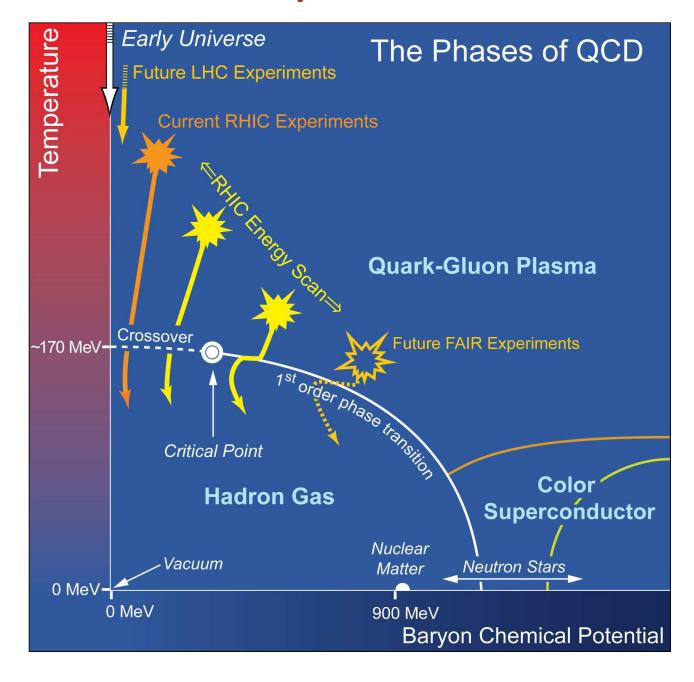


Higher flow harmonics get suppressed by shear viscosity

A detailed study of fluctuations is a powerful discriminator between models!

U. Heinz HIM 2013, 6/28/2013 14(65)

The landscape of QCD matter: The future is now



Probes:

- Collective flow
- Jet modification and quenching
- Thermal electromagnetic radiation
- Critical fluctuations

• . .

U. Heinz HIM 2013, 6/28/2013 15(65)

The University of Queensland pitch drop experiment

SI unit for shear viscosity:

$$[\eta] = \text{Poise} = \text{kg/(m} \cdot \text{s})$$

$$\eta_{\text{water}} = \mathcal{O}(10^{-2} \, \text{Poise})$$

$$\eta_{\text{pitch}} \approx 2.3 \times 10^{11} \, \eta_{\text{water}} = \mathcal{O}(10^9 \, \text{Poise})$$

(\sim one drop per decade – next drop expected to fall in 2013!)

$$\eta_{\text{QGP}} \approx 10^3 \, \eta_{\text{pitch}} = \mathcal{O}(10^{12} \, \text{Poise})$$

U. Heinz HIM 2013, 6/28/2013 16(65)

A measure of fluidity

$$rac{oldsymbol{\eta}}{e\!+\!p}\! imes\!oldsymbol{\partial}\!\cdot\! u = rac{\Gamma_{ ext{exp}}}{\Gamma_{ ext{sound}}}\!\sim\!rac{oldsymbol{\eta}}{s}rac{1}{T au}$$

The **specific viscosity** η/s (s=entropy density) is conceptually related to the "kinematic viscosity" η/n in Navier-Stokes theory

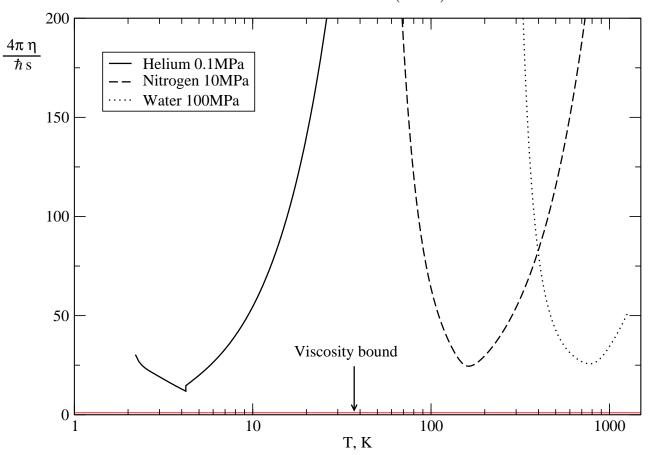
U. Heinz HIM 2013, 6/28/2013 17(65)

QGP - the most perfectly fluid liquid ever observed!

AdS/CFT universal lower viscosity bound conjecture:

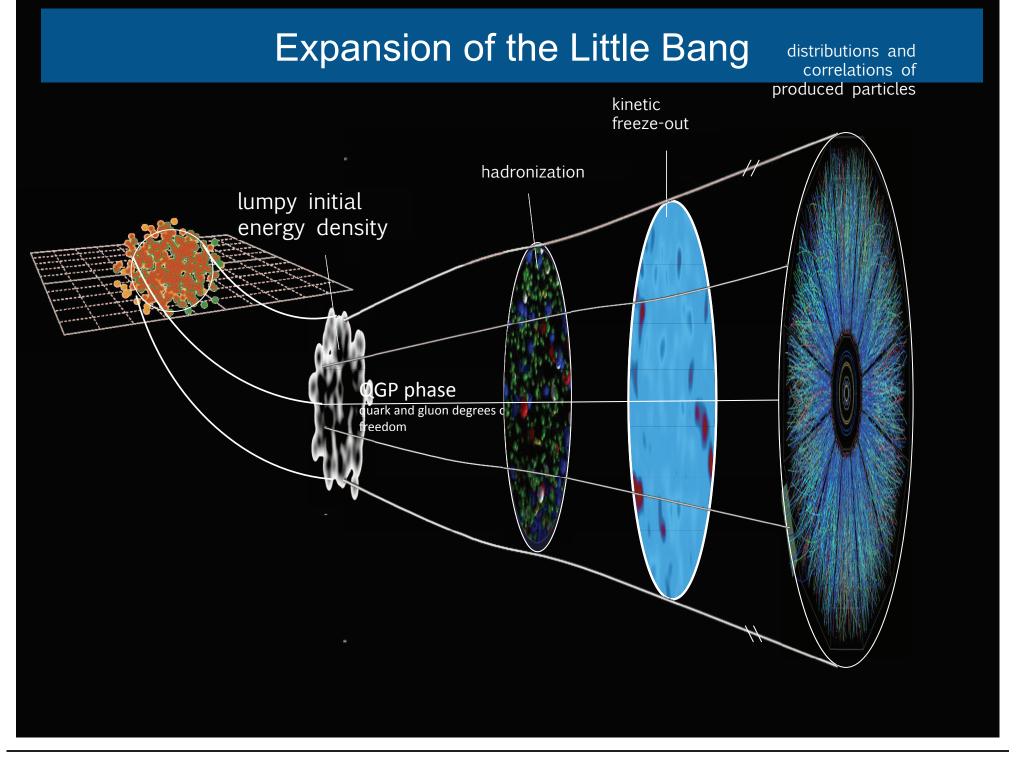
$$rac{\eta}{s}\!\gtrsim\!rac{\hbar}{4\pi k_B}$$

Kovtun, Son, Starinets, PRL 94 (2005) 111601



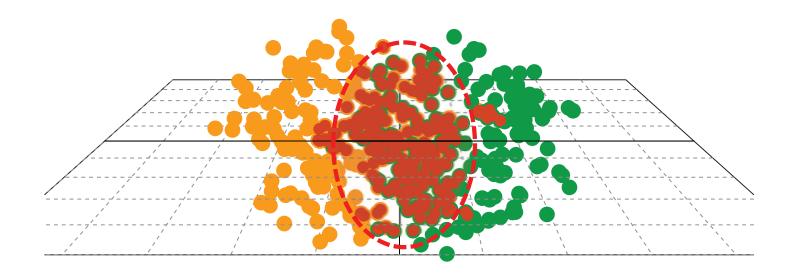
Will show that the QGP viscosity is close to this bound!

U. Heinz HIM 2013, 6/28/2013 18(65)



U. Heinz HIM 2013, 6/28/2013 19(65)

Azimuthal Distributions: x-space

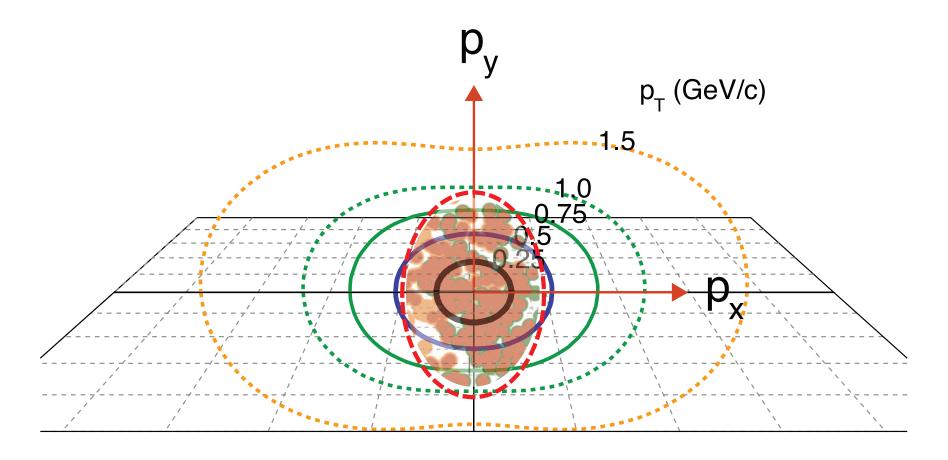


Are particles emitted at random angles?

No. They remember the initial geometry!

U. Heinz HIM 2013, 6/28/2013 20(65)

Azimuthal Distributions: p-space



Are particles emitted at random angles?

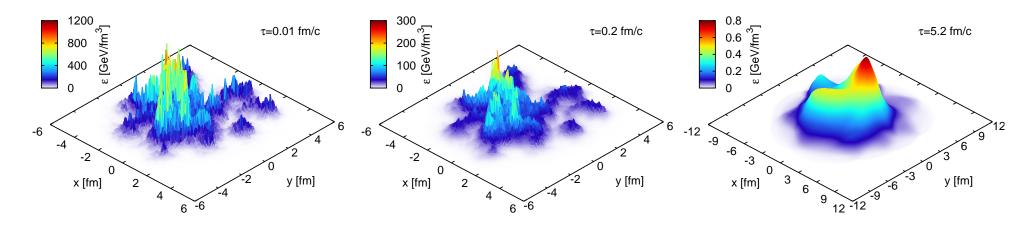
No. They remember the initial geometry!

U. Heinz HIM 2013, 6/28/2013 21(65)

Each Little Bang evolves differently!

Density evolution of a single $b=8\,\mathrm{fm}$ Au+Au collision at RHIC, with IP-Glasma initial conditions, Glasma evolution to $\tau=0.2\,\mathrm{fm}/c$ followed by (3+1)-d viscous hydrodynamic evolution with MUSIC using $\eta/s=0.12=1.5/(4\pi)$

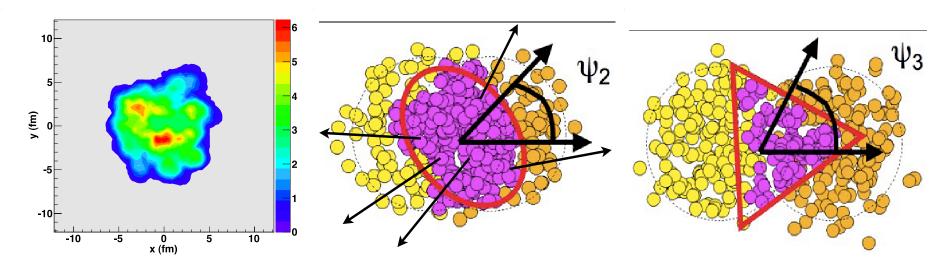
Schenke, Tribedy, Venugopalan, PRL 108 (2012) 252301:



U. Heinz HIM 2013, 6/28/2013 22(65)

Event-by-event shape and flow fluctuations rule!

(Alver and Roland, PRC81 (2010) 054905)



- ullet Each event has a different initial shape and density distribution, characterized by different set of harmonic eccentricity coefficients ε_n
- ullet Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow coefficients v_n and flow angles ψ_n
- At small impact parameters fluctuations ("hot spots") dominate over geometric overlap effects (Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)

U. Heinz HIM 2013, 6/28/2013 23(65)

How anisotropic flow is measured:

Definition of flow coefficients:

$$\frac{dN^{(i)}}{dy \, p_T dp_T \, d\phi_p}(b) = \frac{dN^{(i)}}{dy \, p_T dp_T}(b) \left(1 + 2\sum_{n=1}^{\infty} \boldsymbol{v_n^{(i)}(y, p_T; b)} \cos\left(n(\phi_p - \Psi_n^{(i)})\right)\right).$$

Define event average $\{\ldots\}$, ensemble average $\langle\ldots\rangle$

Flow coefficients v_n typically extracted from azimuthal correlations (k-particle cumulants). E.g. k=2,4:

$$c_{n}\{2\} = \langle \{e^{ni(\phi_{1} - \phi_{2})}\}\rangle = \langle \{e^{ni(\phi_{1} - \psi_{n})}\} \{e^{-ni(\phi_{2} - \psi_{n})}\} + \delta_{2}\rangle = \langle v_{n}^{2} + \delta_{2}\rangle$$

$$c_{n}\{4\} = \langle \{e^{ni(\phi_{1} + \phi_{2} - \phi_{3} - \phi_{4})}\}\rangle - 2\langle \{e^{ni(\phi_{1} - \phi_{2})}\}\rangle = \langle -v_{n}^{4} + \delta_{4}\rangle$$

 v_n is correlated with the event plane while δ_n is not ("non-flow"). $\delta_2 \sim 1/M$, $\delta_4 \sim 1/M^3$. 4th-order cumulant is free of 2-particle non-flow correlations.

These measures are affected by event-by-event flow fluctuations:

$$\langle v_2^2 \rangle = \langle v_2 \rangle^2 + \sigma^2, \qquad \langle v_2^4 \rangle = \langle v_2 \rangle^4 + 6\sigma^2 \langle v_2 \rangle^2$$

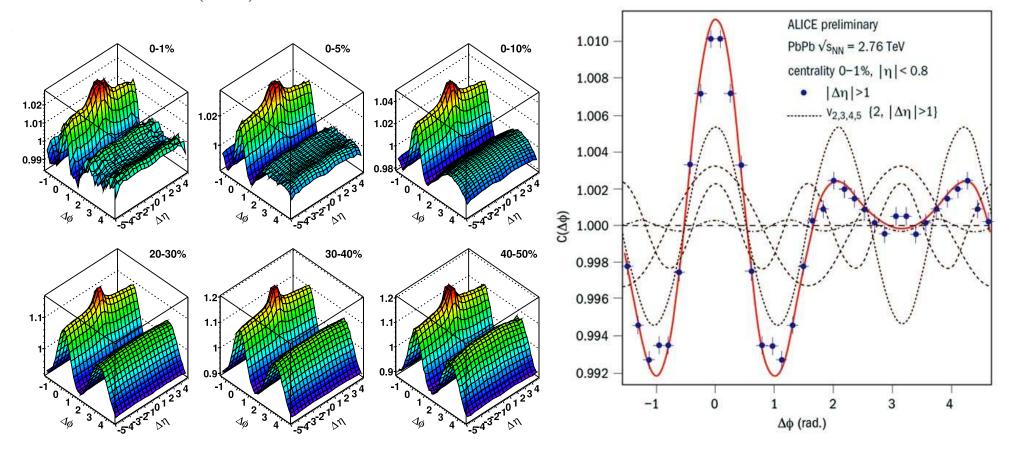
 $v_n\{k\}$ denotes the value of v_n extracted from the k^{th} -order cumulant:

$$v_2\{2\} = \sqrt{\langle v_2^2 \rangle}, \qquad v_2\{4\} = \sqrt[4]{2\langle v_2^2 \rangle^2 - \langle v_2^4 \rangle}$$

Panta rhei: "soft ridge" = "Mach cone" = flow!

ATLAS (J. Jia), Quark Matter 2011

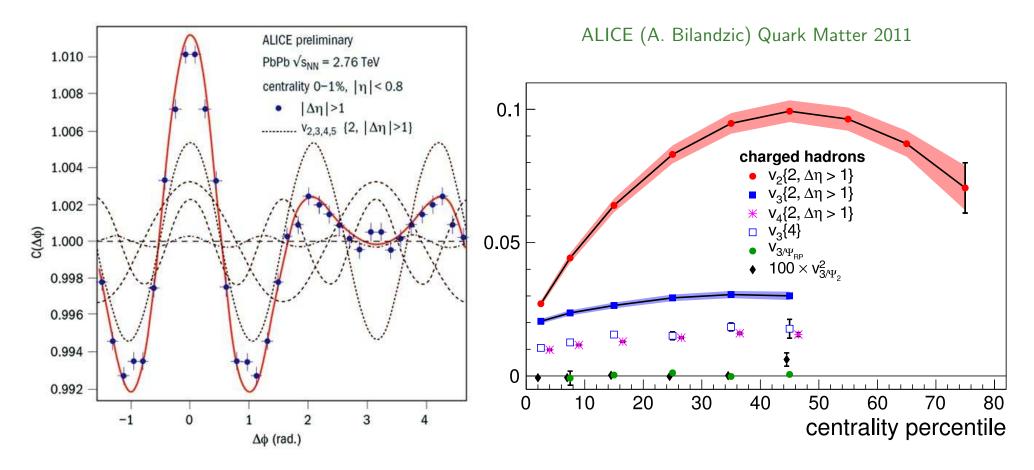
ALICE (J. Grosse-Oetringhaus), QM11



- ullet anisotropic flow coefficients v_n and flow angles ψ_n correlated over large rapidity range! M. Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely generated by hydrodynamic flow.
- ullet in the 1% most central collisions $v_3>v_2$
 - ⇒ prominent "Mach cone"-like structure!
 - ⇒ event-by-event eccentricity fluctuations dominate!

U. Heinz HIM 2013, 6/28/2013 25(65)

Event-by-event shape and flow fluctuations rule!



- ullet in the 1% most central collisions $v_3>v_2\Longrightarrow$ prominent "Mach cone"-like structure!
- triangular flow angle uncorrelated with reaction plane and elliptic flow angles
 due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the most central collisions

U. Heinz HIM 2013, 6/28/2013 26(65)

Viscous relativistic hydrodynamics (Israel & Stewart 1979)

Include shear viscosity η , neglect bulk viscosity (massless partons) and heat conduction ($\mu_B \approx 0$); solve

$$\partial_{\mu} T^{\mu\nu} = 0$$

with modified energy momentum tensor

$$T^{\mu\nu}(x) = (e(x) + p(x))u^{\mu}(x)u^{\nu}(x) - g^{\mu\nu}p(x) + \pi^{\mu\nu}.$$

 $\pi^{\mu\nu}=$ traceless viscous pressure tensor which relaxes locally to 2η times the shear tensor $\nabla^{\langle\mu}u^{\nu\rangle}$ on a microscopic kinetic time scale τ_{π} :

$$D\pi^{\mu\nu} = -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} \right) + \dots$$

where $D \equiv u^{\mu} \partial_{\mu}$ is the time derivative in the local rest frame.

Kinetic theory relates η and τ_{π} , but for a strongly coupled QGP neither η nor this relation are known \Longrightarrow treat η and τ_{π} as independent phenomenological parameters. For consistency: $\tau_{\pi}\theta \ll 1$ ($\theta = \partial^{\mu}u_{\mu} = \text{local expansion rate}$).

U. Heinz HIM 2013, 6/28/2013 27(65)

Converting initial shape fluctuations into final flow anisotropies the QGP shear viscosity

 $(\eta/s)_{
m QGP}$

U. Heinz HIM 2013, 6/28/2013 28(65)

How to use elliptic flow for measuring $(\eta/s)_{ m QGP}$

Hydrodynamics converts

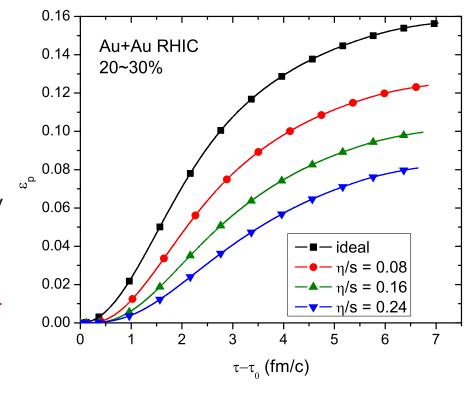
spatial deformation of initial state \Longrightarrow momentum anisotropy of final state,

through anisotropic pressure gradients

Shear viscosity degrades conversion efficiency

$$\varepsilon_x = \frac{\langle\langle y^2 - x^2 \rangle\rangle}{\langle\langle y^2 + x^2 \rangle\rangle} \Longrightarrow \varepsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle}$$

of the fluid; the suppression of ε_p is monotonically related to η/s .



The observable that is most directly related to the total hydrodynamic momentum anisotropy ε_p is the total (p_T -integrated) charged hadron elliptic flow $v_2^{\rm ch}$:

$$\varepsilon_{p} = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle} \Longleftrightarrow \frac{\sum_{i} \int p_{T} dp_{T} \int d\phi_{p} \, p_{T}^{2} \, \cos(2\phi_{p}) \frac{dN_{i}}{dy p_{T} dp_{T} d\phi_{p}}}{\sum_{i} \int p_{T} dp_{T} \int d\phi_{p} \, p_{T}^{2} \, \frac{dN_{i}}{dy p_{T} dp_{T} d\phi_{p}}} \iff v_{2}^{\text{ch}}$$

U. Heinz HIM 2013, 6/28/2013 29(65)

How to use elliptic flow for measuring $(\eta/s)_{\rm QGP}$ (ctd.)

- If ε_p saturates before hadronization (e.g. in PbPb@LHC (?))
 - $\Rightarrow v_2^{\rm ch} \approx$ not affected by details of hadronic rescattering below $T_{\rm c}$ but: $v_2^{(i)}(p_T)$, $\frac{dN_i}{dyd^2p_T}$ change during hadronic phase (addl. radial flow!), and these changes depend on details of the hadronic dynamics (chemical composition etc.)
 - $\Rightarrow v_2(p_T)$ of a single particle species **not** a good starting point for extracting η/s

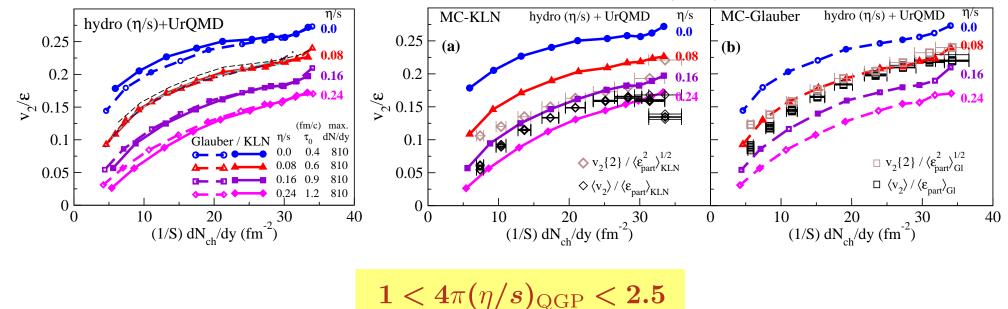
- If ε_p does not saturate before hadronization (e.g. AuAu@RHIC), dissipative hadronic dynamics affects not only the distribution of ε_p over hadronic species and in p_T , but even the final value of ε_p itself (from which we want to get η/s)
 - ⇒ need hybrid code that couples viscous hydrodynamic evolution of QGP to realistic microscopic dynamics of late-stage hadron gas phase
 - ⇒ **VISHNU** ("Viscous Israel-Stewart Hydrodynamics 'n' UrQMD")

(Song, Bass, UH, PRC83 (2011) 024912) Note: this paper shows that UrQMD \neq viscous hydro!

U. Heinz HIM 2013, 6/28/2013 30(65)

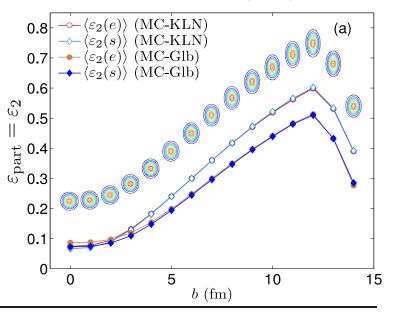
Extraction of $(\eta/s)_{\mathrm{QGP}}$ from AuAu@RHIC

H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRL106 (2011) 192301



- ullet All shown theoretical curves correspond to parameter sets that correctly describe centrality dependence of charged hadron production as well as $p_T\text{-spectra}$ of charged hadrons, pions and protons at all centralities
- $v_2^{\rm ch}/\varepsilon_x$ vs. $(1/S)(dN_{\rm ch}/dy)$ is "universal", i.e. depends **only on** η/s but (in good approximation) not on initial-state model (Glauber vs. KLN, optical vs. MC, RP vs. PP average, etc.)
- ullet dominant source of uncertainty: $arepsilon_x^{
 m Gl}$ vs. $arepsilon_x^{
 m KLN}$ —
- smaller effects: early flow \to increases $\frac{v_2}{\varepsilon}$ by \sim few $\% \to$ larger η/s bulk viscosity \to affects $v_2^{\mathrm{ch}}(p_T)$, but \approx not v_2^{ch}

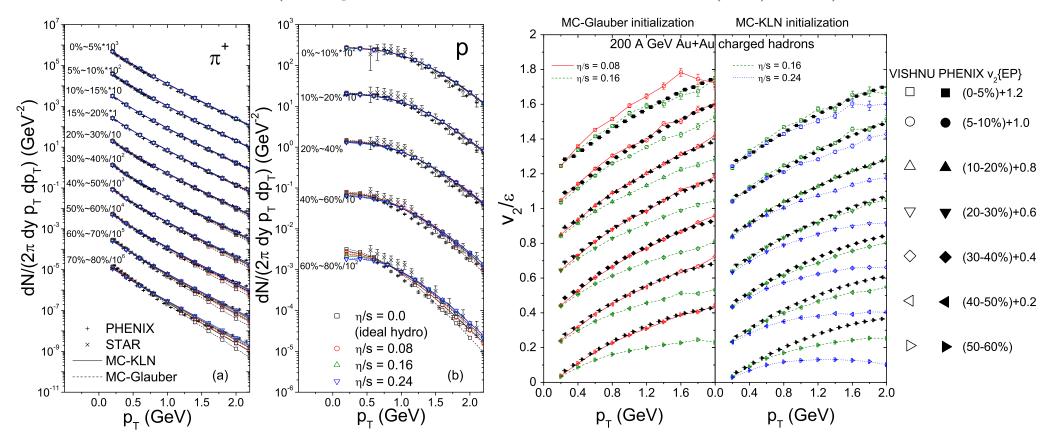
Zhi Qiu, UH, PRC84 (2011) 024911



U. Heinz HIM 2013, 6/28/2013 31(65)

Global description of AuAu@RHIC spectra and v_2

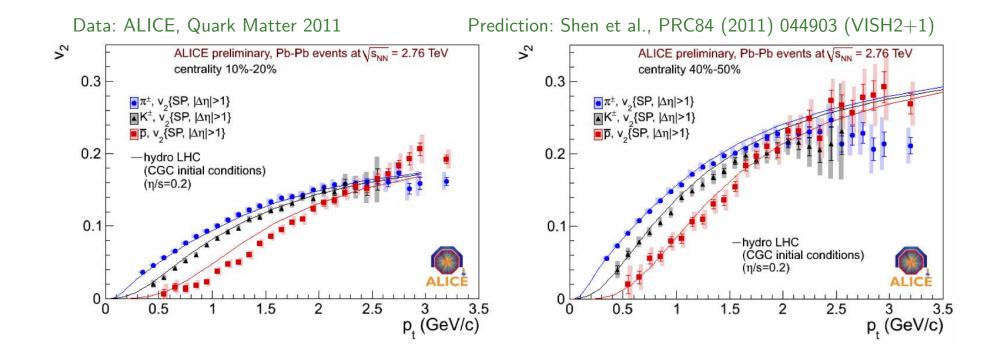
VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)



 $(\eta/s)_{\rm QGP}=0.08$ for MC-Glauber and $(\eta/s)_{\rm QGP}=0.16$ for MC-KLN work well for charged hadron, pion and proton spectra and $v_2(p_T)$ at all collision centralities

U. Heinz HIM 2013, 6/28/2013 32(65)

Successful prediction of $v_2(p_T)$ for identified hadrons in PbPb@LHC



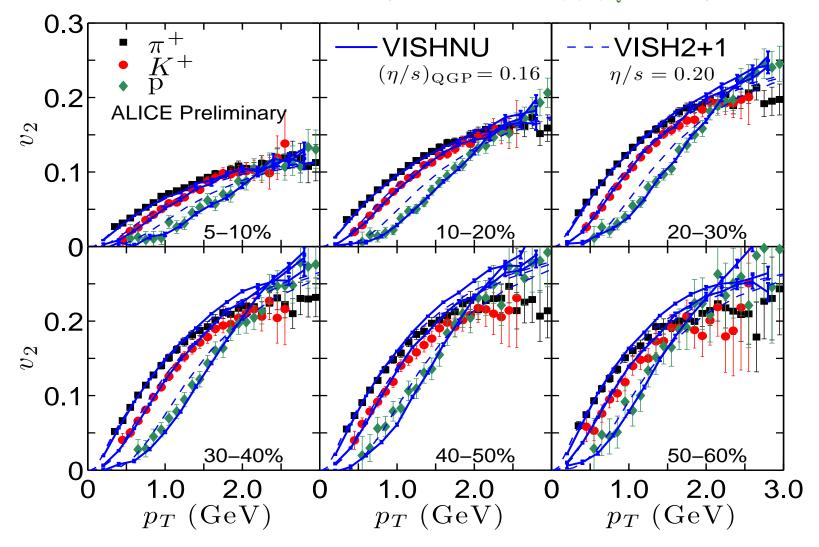
Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions Adding the hadronic cascade (VISHNU) helps:

U. Heinz HIM 2013, 6/28/2013 33(65)

$v_2(p_T)$ in PbPb@LHC: ALICE vs. VISHNU

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011) Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, $(\eta/s)_{\rm QGP}$ =0.2) Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, $(\eta/s)_{\rm QGP}$ =0.16)

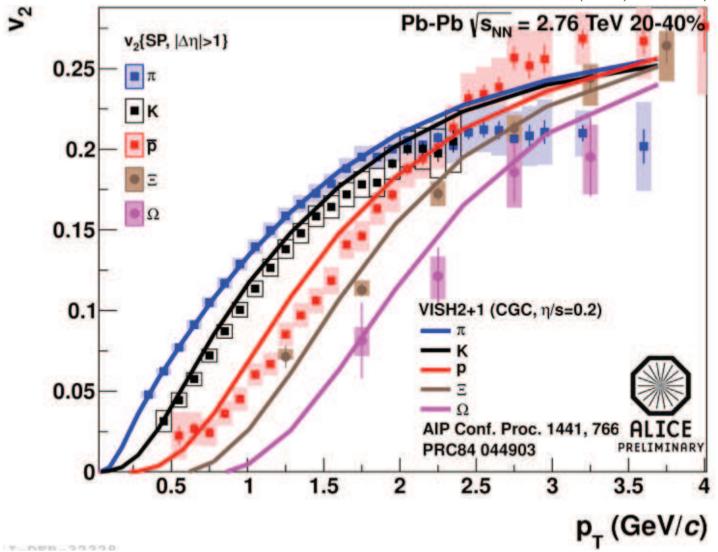


VISHNU yields correct magnitude and centrality dependence of $v_2(p_T)$ for pions, kaons and protons! Same $(\eta/s)_{\rm QGP}=0.16$ (for MC-KLN) at RHIC and LHC!

U. Heinz HIM 2013, 6/28/2013 34(65)

Successful prediction of $v_2(p_T)$ for identified hadrons in PbPb@LHC (II)

Data: ALICE, Quark Matter 2012 Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)



Radial flow pushes v_2 for heavier hadrons to larger p_T

Theory curves are true predictions, without any parameter adjustment

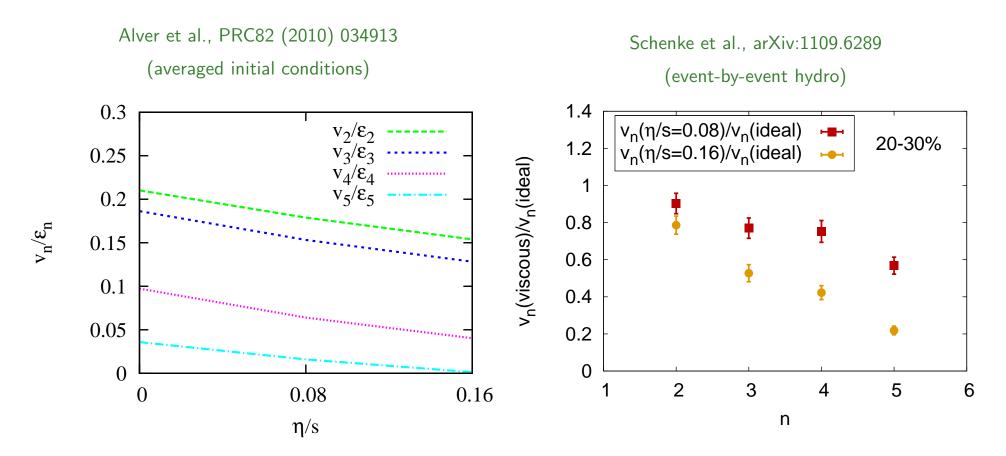
U. Heinz HIM 2013, 6/28/2013 35(65)

Back to the "elephant in the room":
How to eliminate the large model uncertainty in the initial eccentricity?

U. Heinz HIM 2013, 6/28/2013 36(65)

Two observations:

I. Shear viscosity suppresses higher flow harmonics more strongly



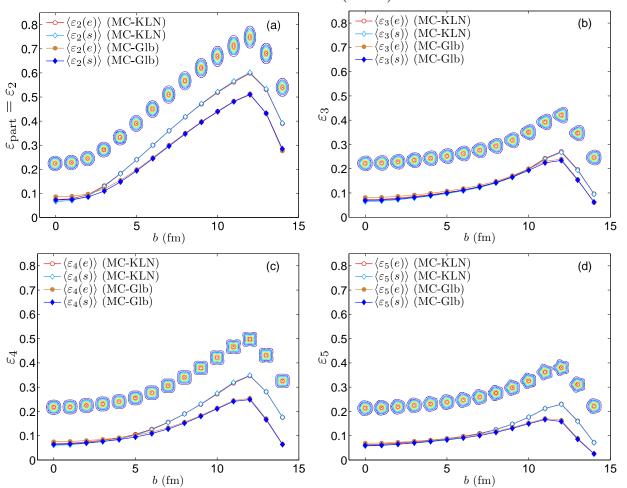
⇒ Idea: Use simultaneous analysis of elliptic and triangular flow to constrain initial state models (see also Bhalerao, Luzum Ollitrault, PRC 84 (2011) 034910)

U. Heinz HIM 2013, 6/28/2013 37(65)

Two observations:

II. ε_3 is \approx model independent

Zhi Qiu, UH, PRC84 (2011) 024911



Initial eccentricities ε_n and angles ψ_n :

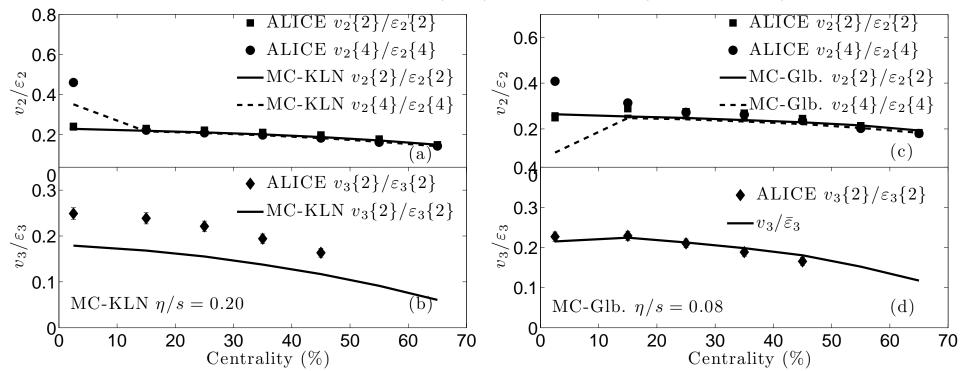
$$\varepsilon_{\mathbf{n}}e^{in\psi_{\mathbf{n}}} = -\frac{\int rdrd\phi \, r^{2}e^{in\phi} \, e(r,\phi)}{\int rdrd\phi \, r^{2} \, e(r,\phi)}$$

- MC-KLN has larger ε_2 and ε_4 , but similar ε_5 and almost identical ε_3 as MC-Glauber
- Angles of ε_2 and ε_4 are correlated with reaction plane by geometry, whereas those of ε_3 and ε_5 are random (purely fluctuation-driven)
- While v_4 and v_5 have mode-coupling contributions from ε_2 , v_3 is almost pure response to ε_3 and $v_3/\varepsilon_3 \approx$ const. over a wide range of centralities

 \Longrightarrow Idea: Use total charged hadron $v_3^{\rm ch}$ to determine $(\eta/s)_{\rm QGP}$, then check $v_2^{\rm ch}$ to distinguish between MC-KLN and MC-Glauber!

Combined v_2 & v_3 analysis: η/s is small!

Zhi Qiu, C. Shen, UH, PLB707 (2012) 151 and QM2012 (e-by-e VISH2+1)



- Both MC-KLN with $\eta/s=0.2$ and MC-Glauber with $\eta/s=0.08$ give very good description of v_2/ε_2 at all centralities.
- Only $\eta/s = 0.08$ (with MC-Glauber initial conditions) describes v_3/ε_3 !

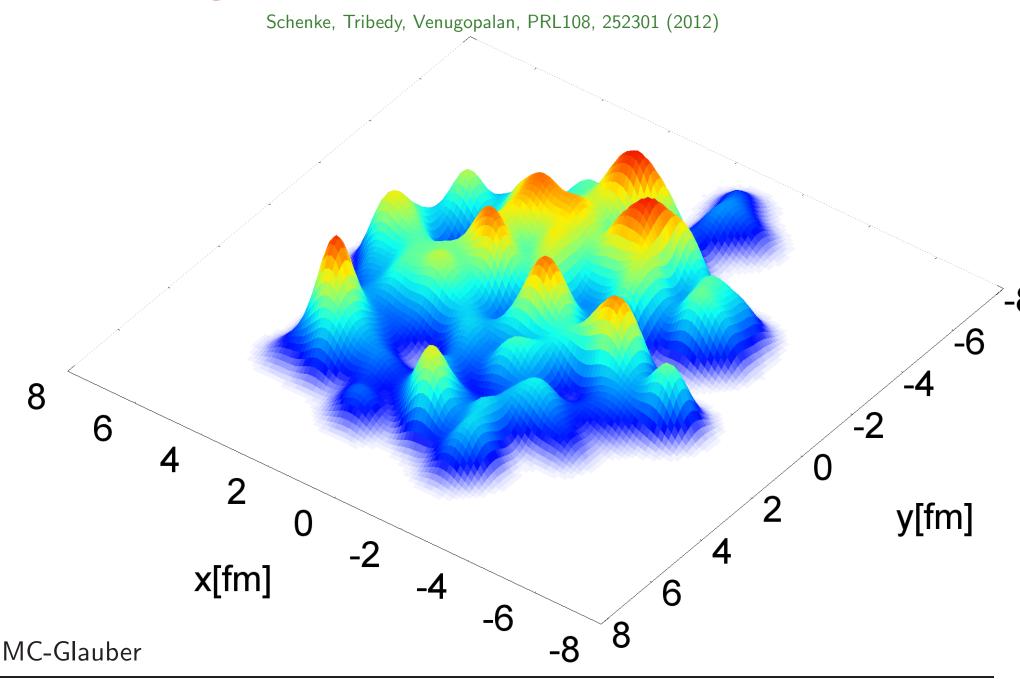
 PHENIX, comparing to calculations by Alver et al. (PRC82 (2010) 034913), come to similar conclusions at RHIC energies (Adare et al., arXiv:1105.3928, and Lacey et al., arXiv:1108.0457)
- Large v_3 measured at RHIC and LHC requires small $(\eta/s)_{\rm QGP} \simeq 1/(4\pi)$ unless the fluctuations in these models are completely wrong and ε_3 is really 50% larger than these models predict!

U. Heinz HIM 2013, 6/28/2013 39(65)

Sub-nucleonic fluctuations

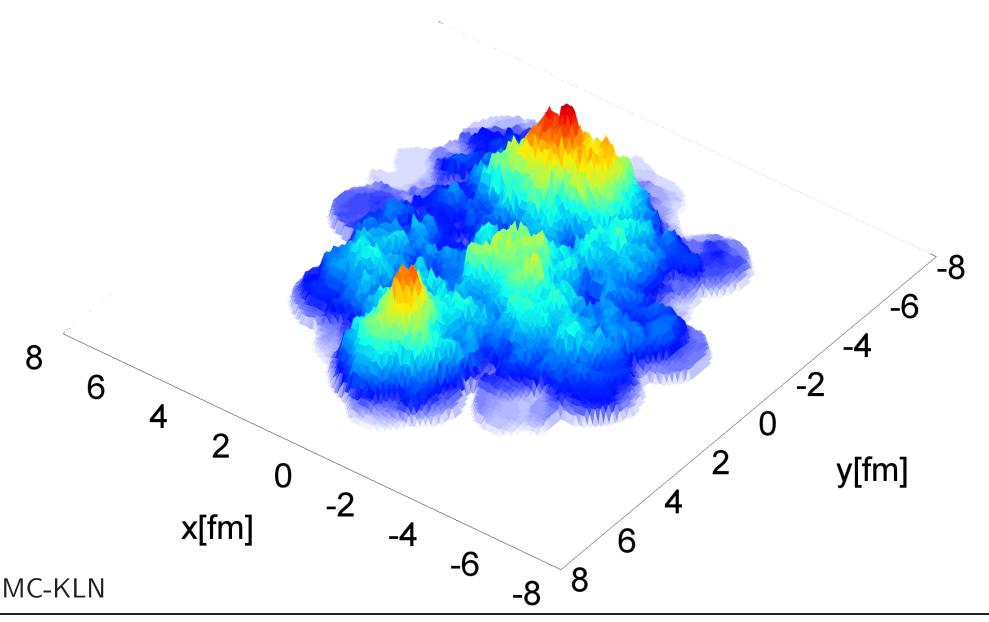
U. Heinz HIM 2013, 6/28/2013 40(65)

Adding sub-nucleonic quantum fluctuations



Adding sub-nucleonic quantum fluctuations

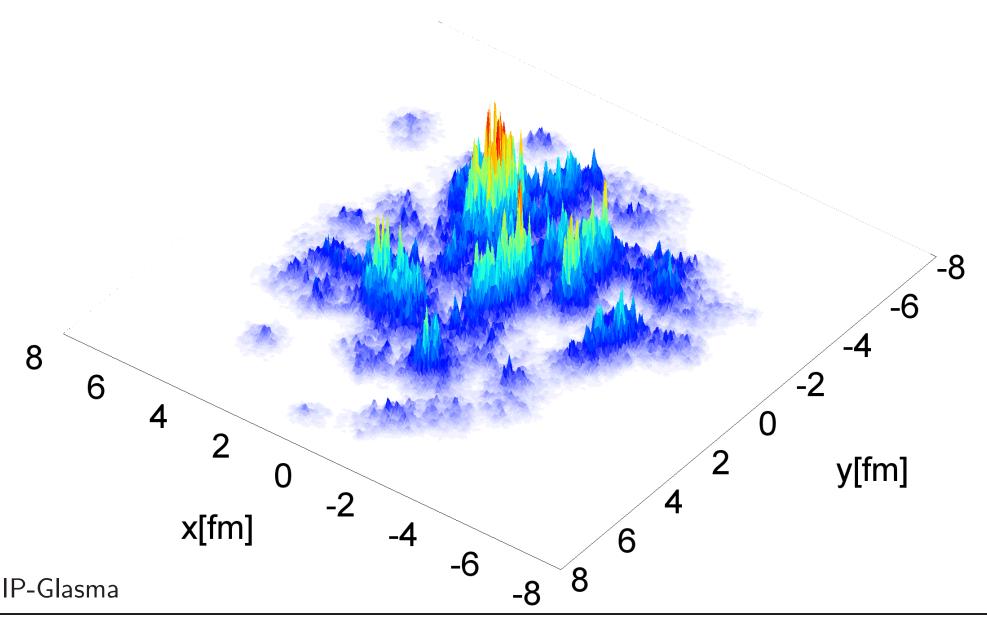
Schenke, Tribedy, Venugopalan, PRL108, 252301 (2012)



U. Heinz HIM 2013, 6/28/2013 42(65)

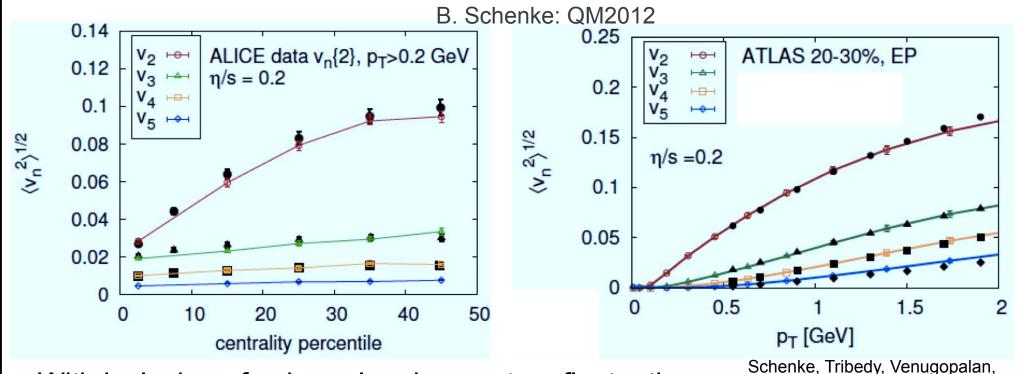
Adding sub-nucleonic quantum fluctuations

Schenke, Tribedy, Venugopalan, PRL108, 252301 (2012)



U. Heinz HIM 2013, 6/28/2013 43(65)

Towards a Standard Model of the Little Bang



With inclusion of sub-nucleonic quantum fluctuations and pre-equilbrium dynamics of gluon fields:

Phys.Rev.Lett. 108:25231 (2012)

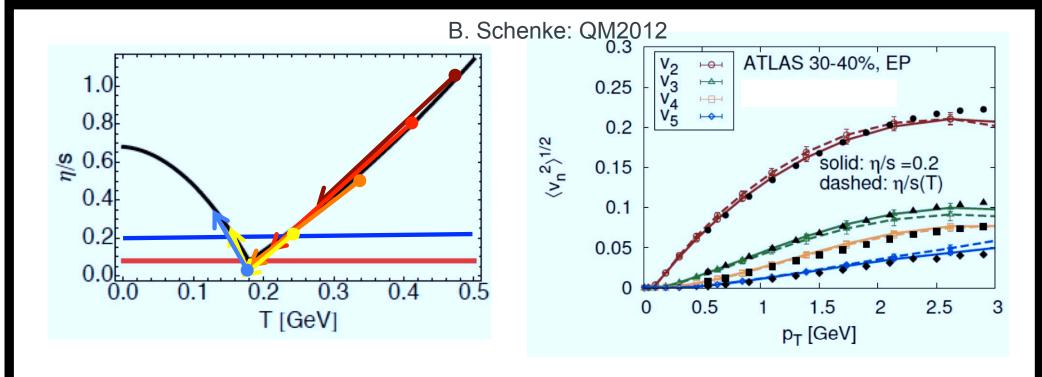
→ outstanding agreement between data and model

Rapid convergence on a standard model of the Little Bang!

Perfect liquidity reveals in the final state initial-state gluon field correlations of size 1/Q_s (sub-hadronic)!

13

What We Don't Know

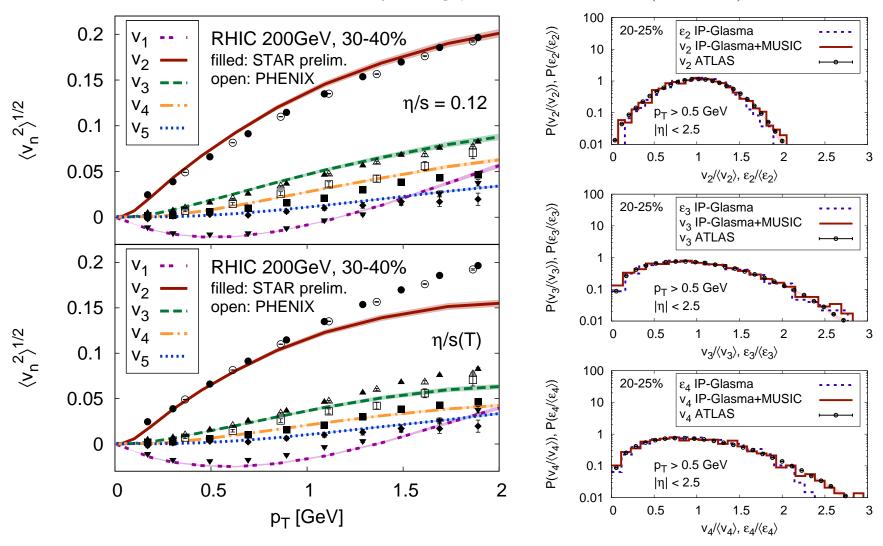


Model doesn't distinguish between a constant η/s of 0.2 or a temperature dependent η/s with a minimum of $1/4\pi$

Need both RHIC and LHC to sort this out!

Other successes of the Little Bang Standard Model

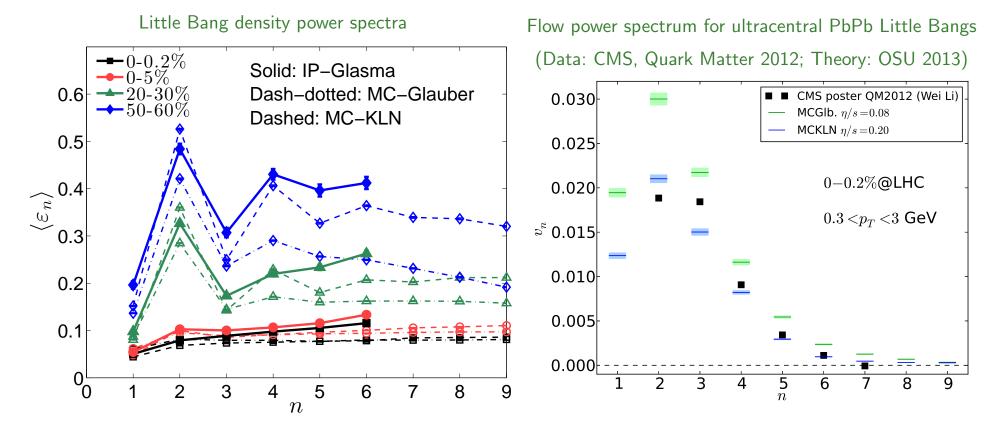
Gale, Jeon, Schenke, Tribedy, Venugopalan, arXiv:1209.6330 (PRL 2012)



- \bullet Model describes RHIC data with lower effective specific shear viscosity $\eta/s=0.12$
- In contrast to MC-Glauber and MC-KLN, IP-Sat initial conditions correctly reproduce the final flow fluctuation spectrum, generated from initial shape fluctuations by viscous hydrodynamics

U. Heinz HIM 2013, 6/28/2013 46(65)

The Little Bang fluctuation power spectrum: initial vs. final



Higher flow harmonics get suppressed by shear viscosity

Neither MC-Glb nor MC-KLN gives the correct initial power spectrum! † R.I.P.

A detailed study of fluctuations is a powerful discriminator between models!

U. Heinz HIM 2013, 6/28/2013 47(65)

Conclusions

- Quark-Gluon Plasma is by far the hottest and densest form of matter ever observed in the laboratory. Its properties and interactions are controlled by QCD, not QED.
- It is a liquid with almost perfect fluidity. Its specific shear viscosity at RHIC and LHC energies is

$$(\eta/s)_{
m QGP}(T_{
m c}{<}T{<}2T_{
m c}) = rac{2}{4\pi} \pm 50\%$$

This is significantly below that of any other known real fluid.

Precision comparison of harmonic flow coefficients at RHIC and LHC provides first serious indications for a moderate increase of the specific QGP shear viscosity between $2T_{\rm c}$ and $3T_{\rm c}$.

- Viscous relativistic hydrodynamics provides a quantitative description of QGP evolution.
- By coupling viscous fluid dynamics for the QGP stage to microscopic evolution models of the
 dense early pre-equilibrium and dilute late hadronic freeze-out stages, a complete dynamical
 description of the strongly interacting matter created in ultra-relativistic heavy-ion collisions
 has been achieved. This dynamical theory has made successful predictions for the first Pb+Pb
 collisions at the LHC that were quantitatively precise and non-trivial (in the sense that they
 disagreed with other predictions that were falsified by the data).
- The Color Glass Condensate theory (IP-Sat model) appears to give the correct spectrum of initial-state gluon field fluctuations.

We are rapidly converging on the Standard Model for the Little Bang

U. Heinz HIM 2013, 6/28/2013 48(65)

Single event anisotropic flow coefficients

In a single event, the specific initial density profile results in a set of complex, y- and p_T -dependent flow coefficients (we'll suppress the y-dependence):

$$V_n = \mathbf{v_n} e^{in\Psi_n} := \frac{\int p_T dp_T d\phi \, e^{in\phi} \frac{dN}{dy p_T dp_T d\phi}}{\int p_T dp_T d\phi \, \frac{dN}{dy p_T dp_T d\phi}} \equiv \{e^{in\phi}\},$$

$$V_n(p_T) = v_n(p_T)e^{in\Psi_n(p_T)} := \frac{\int d\phi \, e^{in\phi} \frac{dN}{dy p_T dp_T d\phi}}{\int d\phi \, \frac{dN}{dy p_T dp_T d\phi}} \equiv \{e^{in\phi}\}_{p_T}.$$

Together with the azimuthally averaged spectrum, these completely characterize the measurable single-particle information for that event:

$$\frac{dN}{dy\,d\phi} = \frac{1}{2\pi} \frac{dN}{dy} \left(1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n} \cos[n(\phi - \Psi_n)] \right),$$

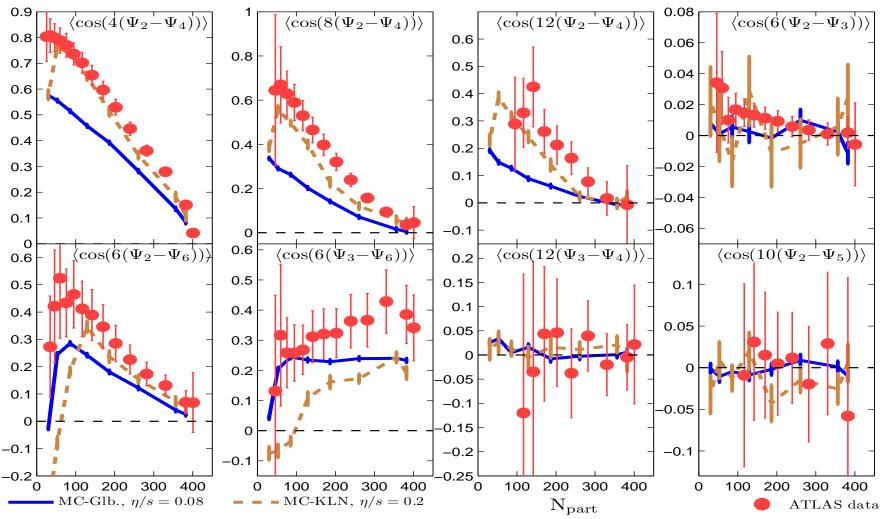
$$\frac{dN}{dy\,p_T\,dp_T\,d\phi} = \frac{1}{2\pi} \frac{dN}{dy\,p_T\,dp_T} \left(1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n}(p_T) \cos[n(\phi - \Psi_n(p_T))] \right).$$

- ullet Both the magnitude v_n and the direction Ψ_n ("flow angle") depend on p_T .
- \bullet v_n , Ψ_n , $v_n(p_T)$, $\Psi_n(p_T)$ all fluctuate from event to event.
- $\Psi_n(p_T) \Psi_n$ fluctuates from event to event.

U. Heinz HIM 2013, 6/28/2013 49(65)

Data: ATLAS Coll., J. Jia et al., Hard Probes 2012

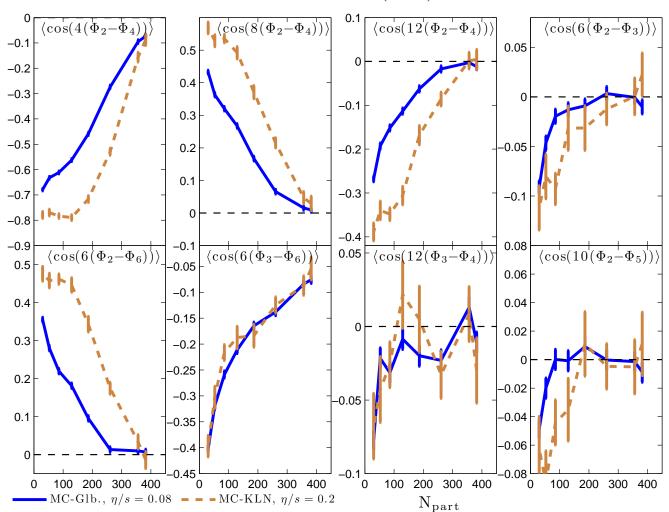
Event-by-event hydrodynamics: Zhi Qiu, UH, PLB 717 (2012) 261 (VISH2+1)



VISH2+1 reproduces qualitatively the centrality dependence of all measured event-plane correlations

U. Heinz HIM 2013, 6/28/2013 50(65)

Zhi Qiu, UH, PLB 717 (2012) 261

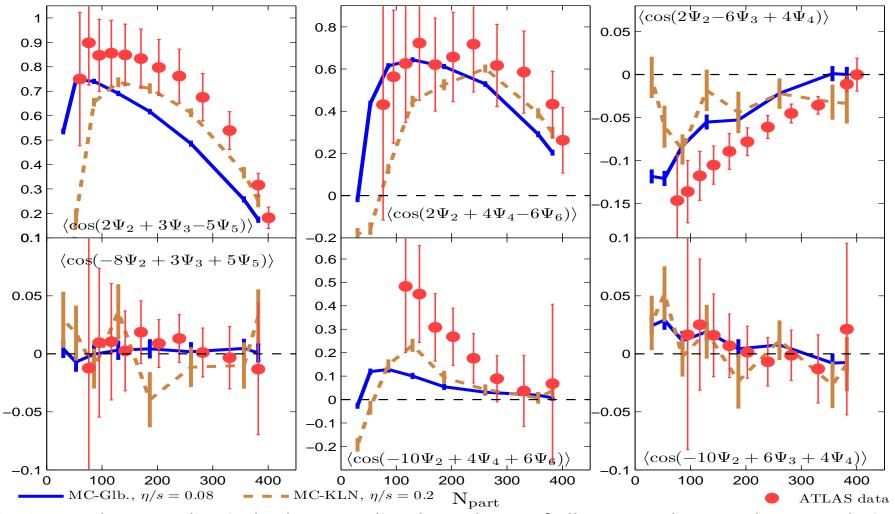


Initial-state participant plane correlations disagree with final-state flow-plane correlations Nonlinear mode coupling through hydrodynamic evolution essential to describe the data!

U. Heinz HIM 2013, 6/28/2013 51(65)

Data: ATLAS Coll., J. Jia et al., Hard Probes 2012

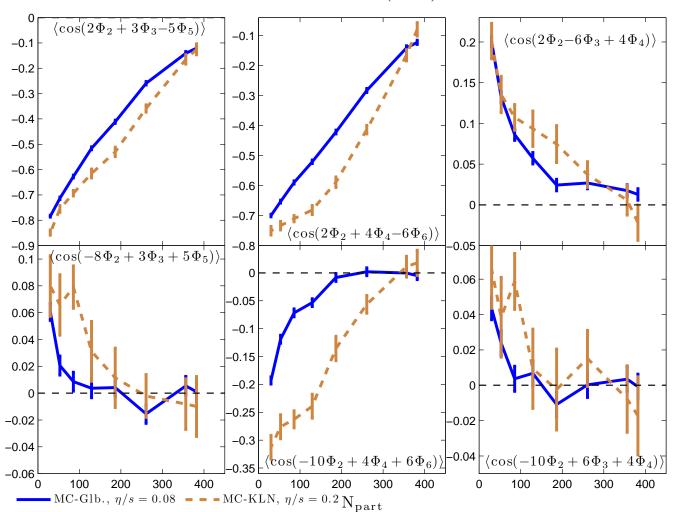
Event-by-event hydrodynamics: Zhi Qiu, UH, PLB 717 (2012) 261 (VISH2+1)



VISH2+1 reproduces qualitatively the centrality dependence of all measured event-plane correlations

U. Heinz HIM 2013, 6/28/2013 52(65)

Zhi Qiu, UH, PLB 717 (2012) 261



Initial-state participant plane correlations disagree with final-state flow-plane correlations Nonlinear mode coupling through hydrodynamic evolution essential to describe the data!

U. Heinz HIM 2013, 6/28/2013 53(65)

Single event anisotropic flow coefficients

In a single event, the specific initial density profile results in a set of complex, y- and p_T -dependent flow coefficients (we'll suppress the y-dependence):

$$V_n = \mathbf{v_n} e^{in\Psi_n} := \frac{\int p_T dp_T d\phi \, e^{in\phi} \, \frac{dN}{dy p_T dp_T d\phi}}{\int p_T dp_T d\phi \, \frac{dN}{dy p_T dp_T d\phi}} \equiv \{e^{in\phi}\},\,$$

$$V_n(p_T) = v_n(p_T)e^{in\Psi_n(p_T)} := \frac{\int d\phi \, e^{in\phi} \frac{dN}{dy p_T dp_T d\phi}}{\int d\phi \, \frac{dN}{dy p_T dp_T d\phi}} \equiv \{e^{in\phi}\}_{p_T}.$$

Together with the azimuthally averaged spectrum, these completely characterize the measurable single-particle information for that event:

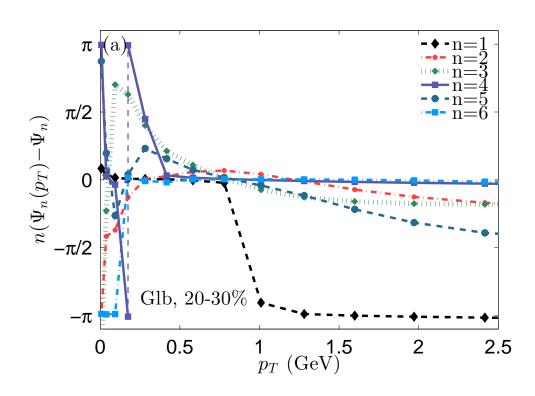
$$\frac{dN}{dy\,d\phi} = \frac{1}{2\pi} \frac{dN}{dy} \left(1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n} \cos[n(\phi - \Psi_n)] \right),$$

$$\frac{dN}{dy\,p_T\,dp_T\,d\phi} = \frac{1}{2\pi} \frac{dN}{dy\,p_T\,dp_T} \left(1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n}(p_T) \cos[n(\phi - \Psi_n(p_T))] \right).$$

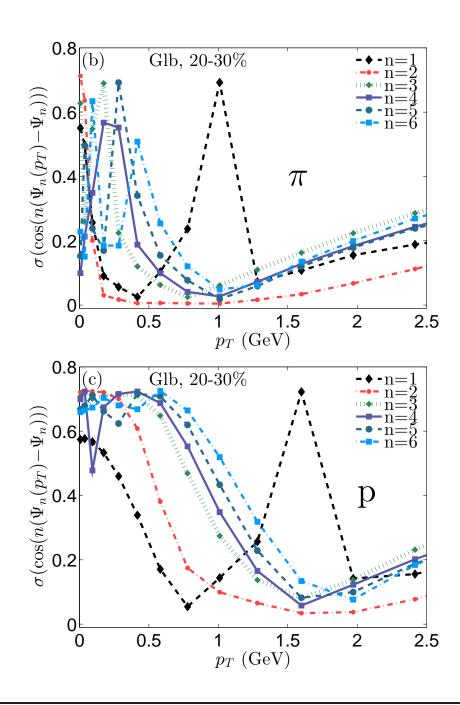
- ullet Both the magnitude v_n and the direction Ψ_n ("flow angle") depend on p_T .
- v_n , Ψ_n , $v_n(p_T)$, $\Psi_n(p_T)$ all fluctuate from event to event.
- $\Psi_n(p_T) \Psi_n$ fluctuates from event to event.

U. Heinz HIM 2013, 6/28/2013 54(65)

p_T -dependent flow angles and their fluctuations

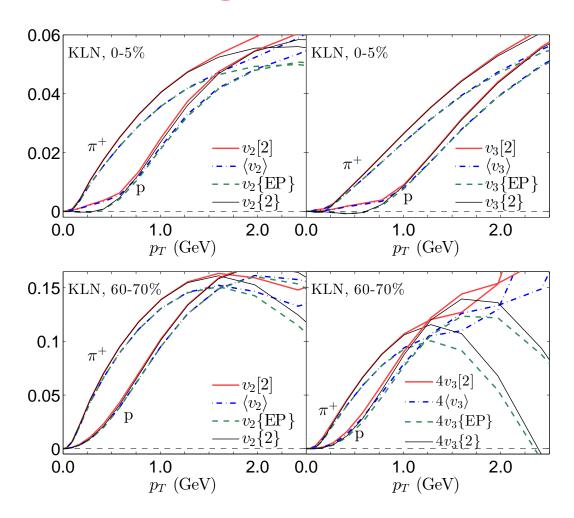


- Except for directed flow (n=1), $\Psi_n(p_T) \Psi_n$ fluctuates most strongly at low p_T
- Directed flow angle $\Psi_1(p_T)$ flips by 180° at $p_T \sim 1 \, \text{GeV}$ for charged hadrons (pions) and at $p_T \sim 1.5 \, \text{GeV}$ for protons (momentum conservation)



U. Heinz HIM 2013, 6/28/2013 55(65)

Elliptic and triangular flow comparison (I)

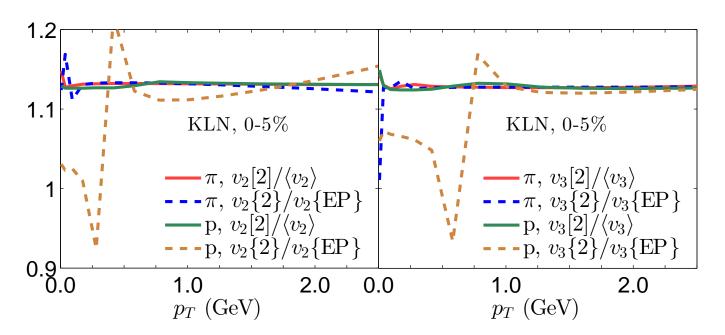


In central collisions, angular fluctuations suppress $v_n\{EP\}(p_T)$ and $v_n\{2\}(p_T)$ below the mean and rms flows at low p_T (clearly visible for protons)

This effect disappears in peripheral collisions, but a similar effect then takes over at higher p_T , for both pions and protons.

U. Heinz HIM 2013, 6/28/2013 56(65)

Elliptic and triangular flow comparison (II): v_n ratios



Except for where the numerator or denominator goes through zero, for central collisions these ratios are equal to $2/\sqrt{\pi}\approx 1.13$, independent of p_T . Expected if flow angles are randomly oriented (Bessel-Gaussian distribution for v_n , see Voloshin et al., PLB 659, 537 (2008)).

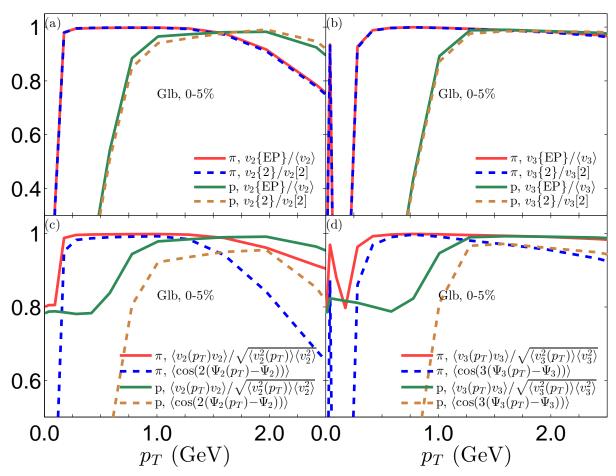
Not true in peripheral collisions, especially not for v_2 (Gardim et al., 1209.2323)

That this works even for $v_n\{2\}/v_n\{\text{EP}\}$ suggests an approximate factorization of angular fluctuation effects!

U. Heinz HIM 2013, 6/28/2013 57(65)

Elliptic and triangular flow comparison (III): v_n ratios

Central collisions:

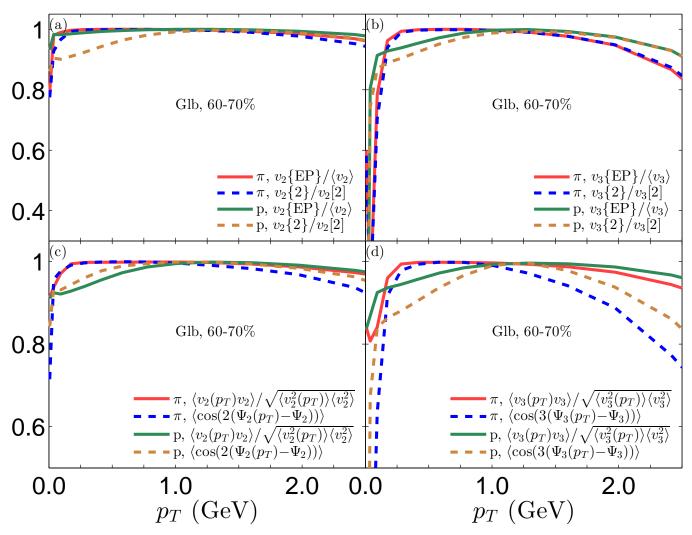


- The angular fluctuation factor $\langle \cos[n(\Psi_n(p_T)-\Psi_n)] \rangle$ completely dominates the p_T -dependence of these ratios!
- Angular fluctuations have similar effect as poor event-plane resolution: they reduce v_n .
- Angular fluctuations are effective both at low and high p_T , but not at intermediate p_T .
- The window for seeing flow angle fluctuation effects at low p_T is smaller for pions than for protons.

U. Heinz HIM 2013, 6/28/2013 58(65)

Elliptic and triangular flow comparison (IV): v_n ratios

Peripheral collisions:

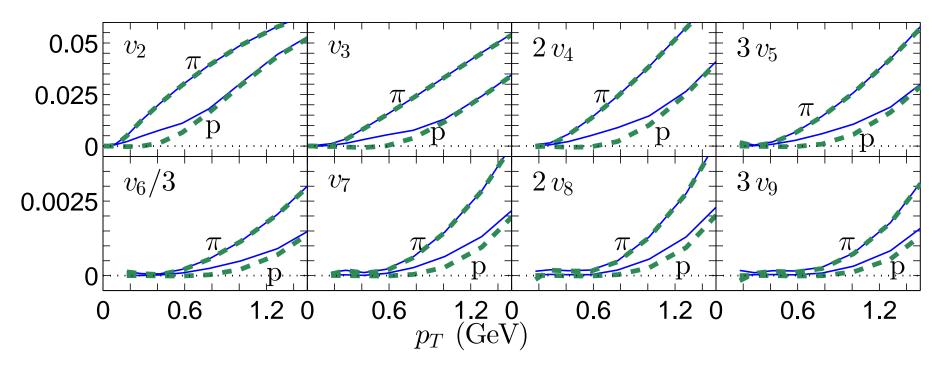


The window for seeing flow angle fluctuation effects at low p_T closes in peripheral collisions.

U. Heinz HIM 2013, 6/28/2013 59(65)

Flow angle fluctuation effects for higher order $v_n(p_T)$

Central collisions; solid: $\langle v_n(p_T) \rangle$; dashed: $v_n\{EP\}(p_T)$:



As harmonic order n increases, suppression of $v_n\{EP\}(p_T)$ (or $v_n\{2\}(p_T)$) from flow angle fluctuations for protons gets somewhat weaker but persists to larger p_T .

U. Heinz HIM 2013, 6/28/2013 60(65)

Test of factorization of two-particle spectra

Factorization $V_{n\Delta}(p_{T1},p_{T2}):=\left\langle\{\cos[n(\phi_1-\phi_2)]\}_{p_{T1}p_{T2}}\right\rangle\approx "v_n(p_{T1})\times v_n(p_{T2})"$ was checked experimentally as a test of hydrodynamic behavior, and found to hold to good approximation.

Gardim et al. (1211.0989) pointed out that event-by-event fluctuations break this factorization even if 2-particle correlations are exclusively due to flow.

They proposed to study the following ratio:

$$r_n(p_{T1}, p_{T2}) := \frac{V_{n\Delta}(p_{T1}, p_{T2})}{\sqrt{V_{n\Delta}(p_{T1}, p_{T1})V_{n\Delta}(p_{T2}, p_{T2})}} = \frac{\langle v_n(p_{T1})v_n(p_{T2})\cos[n(\Psi_n(p_{T1}) - \Psi_n(p_{T2}))]\rangle}{v_n[2](p_{T1})v_n[2](p_{T2})}.$$

Even in the absence of flow angle fluctuations, this ratio is < 1 due to v_n fluctuations (Schwarz inequality), except for $p_{T1} = p_{T2}$.

But it additionally depends on flow angle fluctuations.

To assess what share of the deviation from 1 is due to flow angle fluctuations, we can compare with

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) ext{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))]
angle}{\langle v_n(p_{T1})v_n(p_{T2})
angle}$$

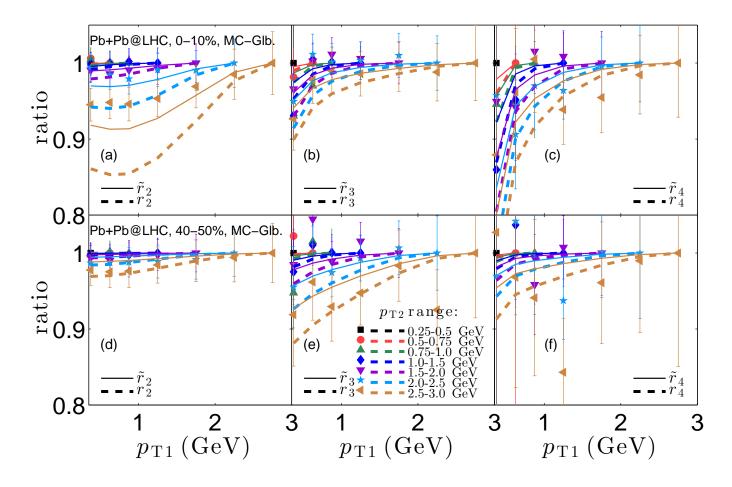
which deviates from 1 **only** due to flow angle fluctuations. Again, this ratio approaches 1 for $p_{T1} = p_{T2}$.

Gardim et al. studied r_n for ideal hydro; we have studied r_n and \tilde{r}_n for viscous hydro.

U. Heinz HIM 2013, 6/28/2013 61(65)

Breaking of factorization by e-by-e fluctuations (I)

Monte Carlo Glauber initial conditions, $\eta/s = 0.08 = 1/(4\pi)$:



More than half of the factorization breaking effects are due to flow angle fluctuations.

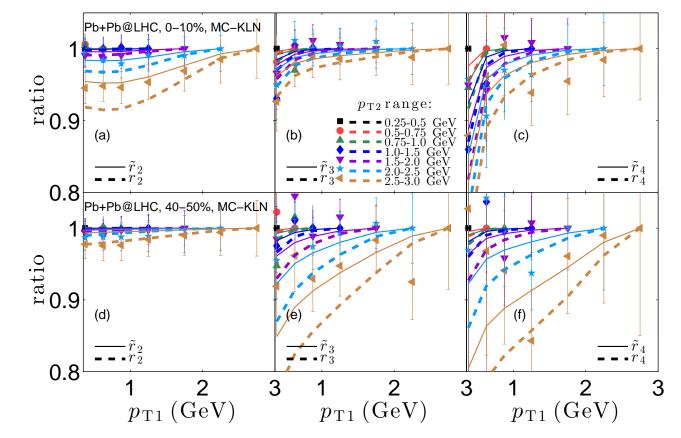
In central collisions, $\eta/s=0.08$ appears to overpredict the breaking of factorization (consistent with Gardim et al. who saw still larger effects for ideal hydro).

Factorization breaking effects appear to be larger for fluctuation-dominated flow harmonics.

U. Heinz HIM 2013, 6/28/2013 62(65)

Breaking of factorization by e-by-e fluctuations (II)

Monte Carlo KLN initial conditions, $\eta/s = 0.2 = 2.5/(4\pi)$:



In central collisions, factorization-breaking effects decrease with increasing η/s .

In peripheral collisions, larger η/s appears to cause a larger breaking of factorization, mostly due to flow angle fluctuations.

Data may indicate slight preference for larger η/s value, but more experimental precision and more detailed theoretical studies are needed to settle this. Analysis of ATLAS data in progress.

U. Heinz HIM 2013, 6/28/2013 63(65)

Conclusions

- ullet Both the magnitudes v_n and the flow angles Ψ_n depend on p_T and fluctuate from event to event.
- In each event, the " p_T -averaged" (total-event) flow angles Ψ_n are identical for all particle species, but their p_T distribution differs from species to species.
- The mean v_n values and their p_T -dependence at RHIC and LHC have already been shown to put useful constraints on the QGP shear viscosity and its temperature dependence (see next talk by B. Schenke)
- ullet The effects of v_n and Ψ_n fluctuations can be separated experimentally by studying different V_n measures based on two-particle correlations.
- Flow angle correlations are a powerful test of the hydrodynamic paradigm and will help to further constrain the spectrum of initial-state fluctuations and QGP transport coefficients.
- Studying event-by-event fluctuations of the anisotropic flows v_n and their flow angles Ψ_n as functions of p_T , as well as the correlations between different harmonic flows (both their magnitudes and angles), provides a rich data base for identifying the "Standard Model of the Little Bang", by pinning down its initial fluctuation spectrum and its transport coefficients.

U. Heinz HIM 2013, 6/28/2013 64(65)