Heavy-Ion Meeting (HIM 2013-06) Jeju Island, Korea, 28-29 June, 2013

Heavy-Ion Results on Hard Probes from CMS

Byungsik Hong (Korea University)

Collaboration

- 1. Introduction
 - CMS detector
 - LHC heavy-ion run history
- 2. Experimental data
 - Two-particle correlations in PbPb
 - High- p_T dihadron correlation and dijet behavior
 - Dijet production in PbPb
 - Momentum imbalance
 - Modification of jet fragmentation and shapes
 - Dijet production in pPb for nPDF
 - Quarkonium production in PbPb
 - Prompt J/ψ , Non-prompt J/ψ , and $\psi(2S)$
 - $\Upsilon(1S), \Upsilon(2S), \text{ and } \Upsilon(3S)$

3. Summary

CMS CMS

p+p at $(\sqrt{s})_{max}$ = 14 TeV Designed L of pp: 10^{34} cm⁻²s⁻¹ Pb+Pb at $(\sqrt{s_{NN}})_{max}$ = 5.5 TeV

LHCb

ATLAS

ALICE

CMS Detector

- 1st PbPb run @ $\sqrt{s_{NN}}$ = 2.76 TeV
 - Nov. Dec. 2010
 - Recorded luminosity by CMS: 7.28 $\mu b^{\text{-1}}$
- 2^{nd} PbPb run @ $\sqrt{s_{NN}}$ = 2.76 TeV
 - Nov. Dec. 2011
 - Rec. Lum. by CMS: 150 µb⁻¹
 About 20 times more statistics than 2010 during similar beamtime

CMS ION LUMINOSITY 2011 and 2010

35

30

25

20

32 nb⁻¹-15

31.7 nb⁻¹

2.1 nb⁻¹

a Feb

- Azimuthal correlation at high p_T near the jet components
 - Reflects the path-length dependence of parton energy loss
 - Quantitative constraint on various jet quenching models
 - Flow $(v_2 \sim v_4)$ from LR correlation needs to be subtracted for jet

• Need to subtract event-plane related correlations ($v_2 \sim v_4$) from dihadron correlation CMS PAS HIN-12-010

Dijet Behavior from High-p_T Correlation

CMS PAS HIN-12-010

28-29 June 2013

Now turn to the full jet reconstruction!

Dijets in PbPb are more imbalanced than PYTHIA except the most peripheral events

• Dijets in PbPb are more imbalanced than PYTHIA for all p_T in central collisions.

- Energy loss is apparent except the most peripheral events
- Energy loss is larger for more central collisions
- No significant dependence on jet p_T

Modification of Jet Fragmentation?

 The jet fragmentation functions of leading and subleading (quenched) jet in PbPb are essentially unmodified within systematic errors for p_T > 4 GeV/c.

 \Rightarrow This statement was based on 6.7 µb⁻¹ from 2010 run!

- Changes from 2010 to 2011 data analysis
 - ~20 times more statistics
 - Simplified jet selection: inclusive jet with $p_T > 100$ GeV/c
 - Lower $p_{\rm T}$ tracks down to 1 GeV/c

- Changes from 2010 to 2011 data analysis
 - ~20 times more statistics
 - Simplified jet selection: inclusive jet with $p_T > 100$ GeV/c
 - Lower p_T tracks down to 1 GeV/c

CMS PAS HIN-12-013

CMS PAS HIN-12-013

CMS PAS HIN-12-013

ORE

CMS PAS HIN-12-013

Integrated Jet Shape

 $\Psi(r)$: average fraction of jet p_T inside the cone of radius r

Anatomy of a Jet in PbPb

CMS Preliminary

1.5

PYTHIA 100 GeV inclusive jet Anti-k_T R=0.3 jet Charged particle energy fraction

- No modification up to $E_T^{HF[|\eta|>4]} > 40$ GeV (top 0~2.5%)
 - Not enough statistics in PbPb for the same $E_T^{HF[|\eta|>4]}$ interval

CMS PAS HIN-13-001

- With the present uncertainties, no change in the $\Delta \phi$ width and the p_T ratio values for all $E_T^{HF[|\eta|>4]}$ bins
- Deadly boring? What about the original purpose of pPb collisions for determining nPDF?

• A systematic shift in the positive η_{dijet} direction vs. HF energy

C. A. Salgado et al., J.Phys. G39 (2012) 015010

- Suppression and enhancement in the η_{dijet} distribution $\approx x$ dependence of the parton distributions in nuclei

- Powerful tool to probe QGP
 - Large mass requires a hard gg scattering at early stage
 - Color Debye screening causes sequential melting of various quarkonium states [Matsui & Satz, PLB 178, 416 (1986)]

- Complications already in pp & pA
 - Nonperturbative hadronization is not well understood.
 - No model is available to explain the cross section and polarization simultaneously in pp.
 - Cold nuclear matter effect & breakup cross section
- Puzzles in AA collisions
 - Similar suppression at RHIC and SPS
 - More suppression in forward than in midrapidity at RHIC

J/ψ at Lower Energies

- Two puzzles

 At mid-rapidity, similar suppression at RHIC & SPS (200 vs. 17 GeV), while density must be higher at RHIC.
 - 2) More suppression at forward rapidity where density must be lower.
- Possible explanations
 1)Cold: shadowing, saturation brings the forward yield down.
 - 2) Hot: recombination of uncorrelated $c\bar{c}$ brings the mid-rapidity yield up.

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{NN}/dp_T d\eta}$$

- CMS measures J/ψ at high p_T > 6.5 GeV/c
 - Factor 5 suppression for the most central 10%
- CMS, ALICE, PHENIX and STAR measure different phase space
 - Require more systematic study for definite conclusions

• CMS measures J/ψ at high $p_T > 6.5$ GeV/c

- Factor 5 suppression for the most central 10%

- **\triangleleft** No need for the regeneration component at high p_T
- Treatment of quarkonia energy loss similarly as open flavor energy loss, without color-octet included, is not supported by data

- Models are sensitive to $d\sigma_{c\bar{c}}/dy$
- The transport models are sensitive to the rate equation controlling the J/ψ dissociation and regeneration –For the most central collisions, recombination component is >50%

JHEP 1205, 063 (2012), $L_{int} = 7.28 \ \mu b^{-1}$ b fraction of J/ψ production ⊈ 1.4 CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV (|y|<2.4) CMS PbPb √s_{NN} = 2.76 TeV CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV (1.6<|y|<2.4) Prompt J/ψ CMS pp \sqrt{s} = 2.76 TeV (|y|<2.4) 1.2 ★ Non-prompt J/ψ CMS pp \sqrt{s} = 2.76 TeV (1.6<|y|<2.4) □ CMS pp \sqrt{s} = 7 TeV (1.6 < |y| < 2.4) ♦ CMS pp $\sqrt{s} = 7$ TeV (1.2 < |y| < 1.6) CMS pp √s = 7 TeV (|y| < 1.2) 0.6 CDF $p\bar{p} \sqrt{s} = 1.96 \text{ TeV} (|y| < 0.6)$ 0.8 20-100% 0-20% 0.6 0.4 0.3 0.4 0.2 0.2 - |y| < 2.40.1 6.5 < p_ < 30 GeV/c 20 25 30 200 250 5 10 15 100 150 300 350 400 p_ (GeV/c) Npart

• Secondary J/ψ from B decay suppressed strongly

- Factor ~3 suppression for the most central collisions
- *b*-quark energy loss in medium at low p_T

CMS PAS HIN-12-014, $L_{int} = 150 \ \mu b^{-1}$

- Secondary J/ψ from *B* decay suppressed strongly - Factor ~3 suppression for the most central collisions
- *b*-quark energy loss in medium at low p_T

Comparisons for Non-prompt J/ψ

 Radiative energy loss is not enough to describe b-quark suppression

Vitev, J. Phys.G35, 104011 (2008)+private comm. Horowitz, arXiv:1108.5876+private comm. Buzzatti & Gyulassy, arXiv: 1207.6020+private comm. He, Fries & Rapp, PRC86, 014903 (2012)+private comm.

- Compare to ALICE D mesons
 R_{AA}(B) > R_{AA}(D)

 Consistent with mass ordering
 - -Dead cone effect?

CMS: PAS HIN-12-014 ALICE: JHEP 09, 112 (2012)

- $R_{\psi(2S)}$: raw yield ratio of $\psi(2S) / J/\psi$
- For 6.5 < p_T < 30 GeV/c and |y| < 1.6 $R_{\psi(2S)}$ in 0–20% PbPb ~2 times smaller than in pp

- For $3 < p_T < 30$ GeV/c and 1.6 < |y| < 2.4
 - $R_{\psi(2S)}$ in 0–20% PbPb ~5 times larger than that in pp with LARGE systematic errors

<u>From J/Ψ To Υ</u>

ALICE, PRL 109, 072301 (2012) $(p_T > 0 \text{ GeV}, 2.5 < y < 4)$

• Recombination is significant for J/ψ at low p_T in central events

- Recombination is much smaller for Υ than J/ ψ
 - $\sigma_{b\bar{b}}/\sigma_{c\bar{c}}$ ≅ 1/20 $\sigma_{c\bar{c}}$ = 6.10 ± 0.93 mb in pp at 7 TeV [LHCb-CONF-2010-013]
- Co-mover absorption effect is smaller for Υ than J/ ψ
 - $\sigma_{h-\Upsilon}$ is expected to be significantly (about 5~10 times) smaller than $\sigma_{h-I/\psi}$
 - Absorption cross section $\sigma_{h-\Upsilon} \sim 0.2$ mb at 150 MeV

[Lin & Ko, PLB 503, 104 (2001)]

<u>Υ at Lower Energy</u>

- Recent pp data at 200 GeV by dielectron channel at |y| < 0.5
- Consistent with the CEM calculations and world data trend

- Recent preliminary data presented by Manuel Calderon de la Barca Sanchez, 5th International Workshop on Heavy Quark Production in Heavy Ion Collisions (2012)
- Old data: PRD 82, 12004 (2010)

<u>Υ at Lower Energy</u>

First Y data in AuAu from STAR, arXiv:1109.3891 Stronger suppression of Υ(1S+2S+3S) for more central collisions

To be compared with CMS data

PRL 107, 052302 (2011), PbPb MinBias, $L_{int} = 7.28 \ \mu b^{-1}$

• Probability to obtain the measured value, or lower, from the background fluctuation is 0.9% (2.4 σ effect)

• Observation of $\Upsilon(2S+3S)$ relative suppression (>5 σ effect)

 Y states are suppressed sequentially
 R_{AA}[Y(3S)] < R_{AA}[Y(2S)] < R_{AA}[Y(1S)]
 Y(2S) is suppressed even in the most peripheral bin.

- $R_{AA}[\Upsilon(3S)] < R_{AA}[\Upsilon(2S)] < R_{AA}[\Upsilon(1S)]$
- Υ(1S) is not suppressed in the most peripheral bin.

STAR data for Υ(1S+2S+3S) in AuAu at 200 GeV integrated for centrality

 $R_{AA}[\Upsilon(1S+2S+3S)]$ $= 0.56 \pm 0.21^{+0.08}_{-0.16}$

arXiv:1109.3891

PRL 109, 222301 (2012)

 CMS data for Y(1S+2S+3S) integrated for centrality $R_{AA}[\Upsilon(1S + 2S + 3S)] = \frac{\Upsilon(1S + 2S + 3S)|_{PbPb}}{\Upsilon(1S + 2S + 3S)|_{pp}}$ More suppression at higher energy $= \frac{\Upsilon(1S)|_{PbPb}}{\Upsilon(1S)|_{pp}} \times \frac{1+\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{1+\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.56 \times \frac{1+0.14}{1+0.97} \approx 0.32$

calculation

Are there any sensitivity to initial temperature?

dominant in central collisions

 \Rightarrow Large uncertainty in nuclear absorption: pPb will help!

 \Rightarrow Mostly consistent with data

 $\Rightarrow \Upsilon(1S)$: Small regeneration

 $\Rightarrow \Upsilon(2S)$: Regeneration is

 \Rightarrow T \approx 610 MeV in this

indicates the suppression is mostly primordial. 0.8

¥ ≌1.4 Strong Υ binding scenario

<u>Comparison to Model for Y</u>

0.6

0.4

0.2

50

100

150

A. Emerick, X. Zhao & R. Rapp, EPJA 48, 72 (2012)

200

N_{part}

250

400

300

Model calculations:

350

<u>Comparison to Model for Y</u>

- AHYDRO: Anisotropic hydrodynamics model
- Incorporating lattice-based potentials, including the real and the imaginary parts
- Includes sequential melting and feed-down contributions \Rightarrow ~50% feed-down from $\chi_{\rm b}$
- Dynamical expansion with variations in initial conditions for T_0 and η/S : data indicates \Rightarrow 552 < T₀ < 580 MeV M. Strickland and D. Bazow, NPA 879, 25 (2012) $\Rightarrow 1 < 4\pi\eta/s < 3$

M. Strickland, PRL 107, 132301 (2011)

Data: JHEP 05, 063 (2012), Model: M. Strickland, PRL 107, 132301 (2011)

- Obtained with 2010 PbPb (7.28 μb⁻¹) and 2011 pp (225 nb⁻¹)
 - Clear suppression at low \boldsymbol{p}_{T}
- High-statistics data sets: 2011 PbPb (150 μb⁻¹) and 2013 pp (5.41 pb⁻¹)
 - The accuracy of the results will be greatly improved in the future.

- 1. Long-range dihadron correlation and dijet behavior
 - Jet enhancement at low $p_{\rm T}$ and deficit at high $p_{\rm T}$
 - The effect is larger on away side
- 2. Dijet correlations
 - Jet fragmentation and shape is modified at large r and low p_{T} in PbPb
 - Dijet η distributions in pPb are useful to study nPDF
- 3. Quarkonium production
 - Prompt and non-prompt J/ψ are suppressed.
 - $\psi(2S)$ are more(less) suppressed than J/ψ at high(low) p_T: Analysis with high statistics pp data is ongoing.
 - Sequential melting of $\Upsilon(nS)$ is observed in PbPb

More public heavy-ion results in our web
<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN</u>

28-29 June 2013