Korean participation in ALICE Upgrade II

In-Kwon Yoo Pusan National University Heavy Ion Meeting 2013-06

Sketch of the ITS upgrade with half a Pb-Pb event superimposed

T

D0

K

SD

- ALICE & Inner Tracking System
- ALICE upgrade Strategy
 ITS Physics Motivation
- New ITS design
 - Goals
 - Upgrade options
- Physics Performance Study
- Korean contribution

Sketch of the ITS upgrade with half a Pb-Pb event superimposed

ALICE Detector

 \Box High precision measurements of rare probes at low p_{T} , which can not be selected with a trigger, require a large sample of events.

Target

- Gain a factor **100** in statistics over approved program.
 - − Pb-Pb recorded luminosity \ge 10 nb⁻¹ → 8 x 10¹⁰ events
 - − pp (@5.5 TeV) recorded luminosity \geq 6 pb⁻¹ → 1.4 x 10¹¹ events
- Significant improvement of vertexing & tracking capabilities.

Goals

- Upgrade the ALICE readout system & online system
- Improve vertexing & tracking at low pT → New ITS

ITS performance - Tracking and vertex determination 🖼 ALICE

Example: D^o meson

Analysis based on decay topology and invariant mass technique

Open charm

Particle	Decay Channel	c τ (μm)
D ⁰	K⁻ π⁺ (3.8%)	123
D+	K⁻ π⁺ π⁺ (9.5%)	312
D _s +	K⁺ K⁻ π⁺ (5.2%)	150
Λ_{c}^{+}	p K⁻ π⁺ (5.0%)	60

In-Kwon Yoo <yoo@pusar.ac.kr>

Vertex projection from two points: a simplified approach (telescope equation)

In-Kwon Yoo <yoo@pusan.ac.kr>

ALICE

HIM 2013-06

New ITS Design goals

- 1. Improve impact parameter resolution by a factor of \sim 3
- Get closer to IP (position of first layer)

: 39mm ≠22mm

- Reduce material budget (X/X₀/layer) : ~1.14% → ~ 0.3% (for inner layers)
- Reduce pixel size
- : currently 50mm x 425mm

monolithic pixels **#** 20 mm x 20 mm

hybrid pixels 🟓 state-of-the-art , 50 mm x 50 mm

- 2. Improve tracking efficiency and p_T resolution at low p_T
- Increase granularity: 6 layers 🖊 7 layers , reduce pixel size
- Increase radial extension: 39-430 mm 🟓 22– 430 (500) mm
- 3. Fast readout

readout of Pb-Pb interactions at > 50 kHz and pp interactions at ~ several MHz

4. Fast insertion/removal for yearly maintenance possibility to replace non functioning detector modules during yearly shutdown

Upgrade options

HIM 2013-06

New ITS (baseline)

Inner Barrel: 3 layers Outer Barrel: 4 layers

Detector module (Stave) consists of

- Carbon fibber mechanical support
- Cooling unit
- Polyimide printed circuit board
- Silicon chips (CMOS sensors)

Flex-cable bus

Complementary Metal-Oxide-Semiconductor

Mechanical structure

Bump bonding

Pixel modules

ITS Barrel Layers

- 3 innermost layers at r= 22, 28 and 36 mm
- Same z-length: 27 cm
- Assumed chip size: 15 mm x 30 mm
- 9 chips/module
- $X/X_{0} \le 0.3\%$

In-Kwon Yo

	Modules	Chips
Layer 1	12	108
Layer 2	16	144
Layer 3	20	180
Total	48	432
CV00@pusar	ic krs	

- 4 outermost layers at r= 48, 52, 96, 102 mm
- 84 cm < z-length < 150 cm
- Double chip rows per module
- $X/X_{0} \le 0.8\%$

HIM 2013-06

	Modules	Chips
Layer 4	48	2688
Layer 5	52	2912
Layer 6	96	9600
Layer 7	102	10200
Total	298	25400

Hybrid Pixel Detector – 'Expolrer-0/1'

In-Kwon Yoo <yoo@pusan.ac.kr>

HIM 2013-06

Physics Performance Study

Motivation : Improvement of impact parameter resolution

Physics Performance Study

Task Organization of Asian groups

Activity	Participants	Comments
Detector simulation and reconstruction, physics performance	Inha, SUT, CCNU (?)	WP physics (A. Dainese) WP simul. and rec. (M. Masera, J. Belikov)
Design of pixel chip	CCNU, Yonsei, TMEC	WP chip design (W. Snoeys)
Characterization of pixel chip (radioactive source, test beam)	CCNU , Inha, Pusan, SLRI	WP characterization and qualification (M. Mager)
Characterization of pixel chip (laser)	Yonsei	WP characterization and qualification (M. Mager)
Pixel chip mass test	CCNU, Yonsei, TMEC	WP wafer pp and test (P. Riedler)
Assembly and qualification of hybrid structures	CCNU, Pusan, Inha	WP middle/outer layers (other institutes involved: Berkeley/INFN- Nikhef)

- 2013/15
 - : Characterization & Qualification of pixel chips.
 - This July/August : Learn Test System (Procedure, Device)
 - In advance : Build a Test System in Pusan
 - : Physics Performance study (with Inha Univ.)
- 2015/2017 : Assembly and qualification of hybrid structures (pixel chips + kapton printed circuit board)
 - Test environment preparation:
 - Probing (including mechanical tooling, probe-card design, ...) Visual inspection system Define test areas (clean room)
 - Automatisation of test-system: movements, pattern recognition.
 - Define **Database** for test-results
 - Component tracking investigate technical options

Васк Up

PROJECT ORGANIZATION

Institute Board (PL, DPL, SPL, TC, Team Leaders)

Project Coordination (PL, DPL, SPL, TC, RC, Upgrade Tasks Coordinators)

ITS Operation (RC, PL, DPL, SPL, TC, QAC, CC, experts)

UPGRADE

2. Simulation and Reconstruction

- 3. Pixel chip design
- 4. Wafers post-processing and

5. Characterization and Qualification

6. Inner Layers Module

7. Middle Layers Module

8. Outer Layers Module

9. Layers Integration/Commissioning

10.Readout Electronics

11. Mechanics and Cooling

12. DCS and Database

ALICE ITS Upgrade layout

Current Layout (SPD)

Inner Radius

- R 50
- R 78.89
- R 157.4

ALICE ITS Upgrade layout

CMOS Pixel Sensors

Select (or LineSelect)

Iref

Gnd

Out (or ColumnOut)

Gnd

Pixel Array Periphery

2013-0

Inner Barrel (IB): 3 layers pixels Radial position (mm): 22,28,36 Length in z (mm): 270 Nr. of modules: 12, 16, 20 Nr. of chips/module: 9 Nr. of chips/layer: 108, 144, 180 Material thickness: ~ 0.3% X₀ Throughput: < 200 Mbit / sec•cm² Outer Barrel (OB): 4 layers pixels Radial position (mm): 200, 220, 410, 430 Length in z (mm): 843, 1475 Nr. of modules: 48, 52, 96, 102 Nr. of chips/module: 56, 56, 98, 98 Nr. of chips/layer: 2688, 2912, 9408, 9996 Material thickness: ~ 0.8% X_0 Throughput: < 6 Mbit / sec•cm²

I&J7300-LF

-

I&J FISNAR INC.

0

6

Chip aligner and gluing machine

LHCC meeting - March 12th, 2013

Care and a

-