Heavy-Ion Meeting (HIM 2013)

Korea University May 24, 2013

ASYMMETRIC MATTER PROPERTIES IN A CHIRAL SOLITON MODEL

Ulugbek Yakhshiev Inha University

Content

- Topological models and soliton
- Medium modifications of nucleons
 - "Outer shell" modifications
 - "Inner core" modifications
- Nuclear matter
 - □ Symmetric matter
 - □ Asymmetric matter
- Structure analysis of in-medium nucleons
- Summary
- Outlook

Structure

- What is a nucleon and, in particular, its core?
- At large number of colors it still has the mesonic content

Stabilization

- Soliton has finite size and finite energy
- One needs at least two contrterms in the effective Lagrangian

Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260(1961)]

Nonlinear chiral effective meson (pionic) theory)

$$\mathcal{L} = \frac{F_{\pi}^{2}}{16} \operatorname{Tr}(\partial_{\alpha}U)(\partial^{\alpha}U^{+}) + \frac{1}{32e^{2}} \operatorname{Tr}[U^{+}\partial_{\alpha}U, U^{+}\partial_{\beta}U]^{2}$$
Shrinks Swells

Hedgehog soliton (nontrivial mapping)

$$U = \exp\left\{\frac{i\,\overline{\tau}\,\overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\,\overline{\tau}\,\overline{n}F(r)\right\}$$

Original Lagrangian in use

[G.S. Adkins et al. Nucl. Phys. B228 (1983)]

$$\mathcal{L}_{\text{free}} = \frac{F_{\pi}^2}{16} \operatorname{Tr}\left(\partial^{\alpha}U\right) \left(\partial_{\alpha}U^+\right) + \frac{1}{32e^2} \operatorname{Tr}\left[U^+\partial_{\alpha}U, U^+\partial_{\beta}U\right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr}\left(U + U^+ - 2\right)$$

- Nontrivial mapping
- It has topologically nontrivial solitonic solutions in different topological sectors with corresponding conserved topological number A
- Nucleon is quantized state of the classical solitonskyrmion

$$U = \exp\{i\bar{\tau} \ \bar{\pi}/2F_{\pi}\} = \exp\{i\bar{\tau} \ \bar{n}F(r)\}$$
$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$

$$A = \int d^3 r B^0$$

$$\overline{r}^2 = \overline{r}^2$$

$$H = M_{cl} + \frac{S^{-}}{2I} = M_{cl} + \frac{I^{-}}{2I},$$

$$|S = T, s, t > = (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T}(A)$$

- What happens in a medium?
- One should be able to describe
 - Deformations
 - Mass change
 - Swelling
 - Effective NN interactions
 - Etc.

Modification in the mesonic sector modifies the baryonic sector

• How to modify the mesonic sector?

Soliton in Nuclear Medium

- Outer shell modifications plus
- Inner core modifications (in particular at higher densities)

"Outer shell" modifications

- Three types of pions treated separately
- In nuclear matter, one considers three types of polarization operators
- There will be some parameters which correspond to isospin breaking effects in the surrounding environment

$$\left(\partial^{\mu}\partial_{\mu}+m_{\pi^{(\pm,0)}}^{2}\right)\vec{\pi}^{(\pm,0)}=0$$

$$\left(\partial^{\mu}\partial_{\mu} + m_{\pi^{(\pm,0)}}^{2} + \hat{\Pi}^{(\pm,0)}\right) \vec{\pi}^{(\pm,0)} = 0$$

	$\pi\text{-}\mathrm{atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_{\pi}^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 \left[m_{\pi}^{-3} \right]$	0.23	0.25
$c_1 \left[m_{\pi}^{-3} \right]$	0.15	0.16
g'	0.47	0.47

"Inner core" modifications [UY & HC Kim, PRC83 (2011); UY, JKPS62 (2013)]

□ May be related to

vector meson properties in nuclear matternuclear matter properties

$$\mathcal{L}_{4}^{*} = -\frac{1}{16e_{\tau}^{*2}} \operatorname{Tr}[L_{0}, L_{i}]^{2} + \frac{1}{32e_{s}^{*2}} \operatorname{Tr}[L_{i}, L_{j}]^{2}$$

$$e \rightarrow e^* = e \gamma^{1/2}(\rho)$$

Final Lagrangian

[U.Meissner et al., EPJ A36 (2008); UY, JKPS62 (2013)]

Separated into two parts

$$\mathcal{L}^* = \mathcal{L}^*_{\mathrm{sym}} + \mathcal{L}^*_{\mathrm{asym}}$$

Isoscalar part

$$\mathcal{L}_{sym}^* = \mathcal{L}_2^* + \mathcal{L}_4^* + \mathcal{L}_{\chi SB}^*$$

Isovector part

$$\begin{split} \mathcal{L}_{2}^{*} &= \frac{F_{\pi}^{2}}{16} \Big\{ \alpha_{s}^{02} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) \\ &- \alpha_{p}^{0} \operatorname{Tr} (\vec{\nabla} U \cdot \vec{\nabla} U^{\dagger}) \Big\}, \\ \mathcal{L}_{4}^{*} &= -\frac{1}{16e^{2} \zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_{0} U, U^{\dagger} \partial_{i} U \right]^{2} \\ &+ \frac{1}{32e^{2} \zeta_{s}} \operatorname{Tr} \left[U^{\dagger} \partial_{i} U, U^{\dagger} \partial_{j} U \right]^{2}, \\ \mathcal{L}_{\chi SB}^{*} &= \frac{F_{\pi}^{2} m_{\pi}^{2}}{8} \alpha_{s}^{00} \operatorname{Tr} \left(U - 1 \right), \end{split}$$

$$\mathcal{L}_{\text{asym}}^{*} = \Delta \mathcal{L}_{\text{mes}} + \Delta \mathcal{L}_{\text{env}}^{*}$$

$$\Delta \mathcal{L}_{\text{mes}} = -\frac{F_{\pi}^{2}}{32} \sum_{a=1}^{2} (m_{\pi^{\pm}}^{2} - m_{\pi}^{2}) \text{Tr}(\tau_{a}U) \text{Tr}(\tau_{a}U^{\dagger}),$$

$$\Delta \mathcal{L}_{\text{env}}^{*} = -\frac{F_{\pi}^{2}}{32} \sum_{a,b=1}^{2} \varepsilon_{ab3} \frac{\Delta \chi}{m_{\pi}} \text{Tr}(\tau_{a}U) \text{Tr}(\tau_{b}\partial_{0}U^{\dagger}).$$

May 24, 2013

Medium functionals and their parameters

[U.Meissner et al., EPJ A36 (2008); UY, JKPS62 (2013)]

Consistency with other approaches

- Effective values of pion decay constant and pion mass are qualitative agreement with
 - in-medium CPT [U.Meissner, J.Oller, A.Wirzba, Ann. Phys. 297 (2002)]
 - QCD sum rules [H.c.Kim, M.Oka, NPA 720 (2003)]

$$F_{\pi,t} \to F_{\pi,t}^* = F_{\pi} (1 + \chi_s^{02} m_{\pi}^{-2})$$

$$F_{\pi,s} \to F_{\pi,s}^* = F_{\pi} (1 - \chi_p^0)$$

$$m_{\pi} \to m_{\pi}^* = m_{\pi} \left(\frac{1 + \chi_s^{00} m_{\pi}^{-2}}{1 - \chi_p^0} \right)$$

Consistency with other Skyrme Model approaches

$$F_{\pi} \to F_{\pi}^*, \quad m_{\pi} \to m_{\pi}^*, \quad e \to e^*$$

[H.J.Lee et al., NPA723 (2003)]

Binding-energy-formula terms in our model

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \dots,$$

- Volume term
 - Infinite and asymmetric nuclear matter
- Asymmetry term
 - Isospin asymmetric environment
- Surface and Coulomb terms
 - Nucleons in a finite volume
- □ Finite nuclei properties
 - Local density approximation

Volume term and Symmetry energy

At infinite nuclear matter approximation the binding energy formula takes form

$$\begin{aligned} \varepsilon(\lambda,\beta) &= -a_V(\lambda) + a_S(\lambda)\beta^2 + \mathcal{O}(\beta^4) \\ &\equiv \varepsilon_V(\lambda) + \varepsilon_S(\lambda,\beta) \,, \end{aligned}$$

- λ is a normalized nuclear matter density
- β is an asymmetry parameter
- *a_s* is the symmetry energy

Volume term

 Volume term (binding energy per nucleon) in the binding energy formula can be defined as

$$\varepsilon_V(\lambda) = \frac{m_p^*(\lambda, 0) + m_n^*(\lambda, 0)}{2} - \frac{m_p + m_n}{2}$$

- Model I solid curve
- Model II dashed curve
- Model III dotted curve

Model	γ_0	$\gamma_{ m n,0}$	$\gamma_{ m d,0}$
	$[m_{\pi}^{-3}]$	$[m_{\pi}^{-3}]$	$[m_\pi^{-3}]$
Ι	0.0	1.901	0.070
II	0.5	1.867	0.049
III	1.0	1.840	0.031

□ Fraction of the binding energy per unit volume to normal nuclear matter density as a function of normalized density [UY, JKPS60(2012)]

□ Pressure as a function of normalized density (Model II)

$$p = \rho \, \frac{\partial \tilde{\mathcal{E}}_V(\rho)}{\partial \rho} - \tilde{\mathcal{E}}_V(\rho) = -\rho_0 \lambda^2 \frac{\partial a_V(\lambda)}{\partial \lambda}$$

TABLE I: The volume term coefficient $a_V(1)$ at the normal nuclear matter density $\lambda = 1$ and the compression modulus K_0 of symmetric nuclear matter. Their values are given for the three different sets of parameters. The variational parameters $\gamma_{n,0}$ and $\gamma_{d,0}$ are chosen in such a way that at saturation point $\rho = \rho_0 = 0.15$ fm⁻³ the value of volume energy per nucleon is close to its experimental value, $\varepsilon_V^{exp} \simeq -16$ MeV.

Model	γ_0	$\gamma_{ m n,0}$	$\gamma_{ m d,0}$	$a_V(1)$	K_0
	$[m_\pi^{-3}]$	$[m_{\pi}^{-3}]$	$[m_{\pi}^{-3}]$	[MeV]	[MeV]
Ι	0.0	1.901	0.070	15.94	202
II	0.5	1.867	0.049	16.11	218
III	1.0	1.840	0.031	16.12	366

• Asymmetry energy

$$\varepsilon_S(\lambda,\beta) = \frac{m_{\rm p}^*(\lambda,\beta) + m_{\rm n}^*(\lambda,\beta)}{2} - \frac{m_{\rm p}^*(\lambda,0) + m_{\rm n}^*(\lambda,0)}{2}.$$

• Symmetry energy

$$a_S(\lambda) = \frac{1}{2} \left. \frac{\partial^2 \varepsilon_S(\lambda, \beta)}{\partial \beta^2} \right|_{\beta=0}$$

• Symmetry energy coefficients

$$a_S(\lambda) = a_S(1) + \frac{L_S}{3}(\lambda - 1) + \frac{K_S}{18}(\lambda - 1)^2 + \dots$$

Symmetry energy

• Symmetry energy as function of normalized density

TABLE II: The slope L_S and the curvature K_S of symmetry energy. The variational parameters $\gamma_{n,1}$ and $\gamma_{d,1}$ are chosen in such a way that at normal nuclear matter density $\rho = \rho_0 =$ 0.15 fm^{-3} the value of symmetry energy $a_S(1)$ is close to its experimental value, $a_S^{\text{exp}} \approx 32$ MeV. Other parameters $\gamma_{n,0}$ and $\gamma_{d,0}$ are given in Table I.

Model	$\gamma_{ m n,1}$	$\gamma_{ m d,1}$	$a_S(1)$	L_S	K_S
	$[m_{\pi}^{-3}]$	$[m_{\pi}^{-3}]$	[MeV]	[MeV]	[MeV]
Ι	0.830	0.415	33.99	91.75	-3428
II	0.860	0.430	31.21	85.66	-2761
III	0.830	0.374	31.21	76.41	-2800

- Nucleon structure itself is very interesting topic
- Scalar, vector and axial-vector properties of the nucleon have been studied extensively
- From other side GPD accessible via hard exclusive reactions gives information about Energy Momentum Tensor form factors.

- □ It allows to address questions like:
 - How are the total angular momentum and angular momentum of the nucleon shared among its constituents?
 - How are the strong forces experienced by its constituents distributed inside the nucleon?
- EMT form factors studied in lattice QCD, ChPT and in different models (chiral quark soliton model, Skyrme model, etc.)
- We make further step studying EMT form factors in nuclear matter

Energy-momentum tensor form-factorsDefinition

$$\langle p' | \hat{T}_{\mu\nu}(0) | p \rangle = \bar{u}(p', s') \left[M_2(t) \, \frac{P_\mu P_\nu}{M_N} + J(t) \, \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho})\Delta^\rho}{2M_N} + d_1(t) \, \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M_N} \right] u(p, s) \,,$$

These three form factors give information about momentum distribution, angular momentum distribution and about the stabilization of strong forces inside the nucleon.

$$\begin{split} T_{00}^{*}(r) &= \frac{F_{\pi,s}^{*2}}{8} \left(\frac{2\sin^{2}F}{r^{2}} + F'^{2} \right) + \frac{\sin^{2}F}{2\,e^{*2}\,r^{2}} \left(\frac{\sin^{2}F}{r^{2}} + 2F'^{2} \right) + \frac{m_{\pi}^{*2}F_{\pi,s}^{*2}}{4} \left(1 - \cos F \right), \\ T_{0k}^{*}(r,s) &= \frac{\epsilon^{klm}r^{l}s^{m}}{(s \times r)^{2}} \,\rho_{J}^{*}(r), \\ T_{ij}^{*}(r) &= s^{*}(r) \left(\frac{r_{i}r_{j}}{r^{2}} - \frac{1}{3} \,\delta_{ij} \right) + p^{*}(r) \,\delta_{ij}, \\ T_{ij}^{*}(r) &= \frac{1}{M_{N}^{*}} \int d^{3}r \, T_{00}^{*}(r) = 1, \quad J^{*}(0) = \int d^{3}r \, \rho_{J}^{*}(r) = \frac{1}{2} \,. \quad J^{*}(t) = 3 \int d^{3}r \, \rho_{J}^{*}(r) \, \frac{j_{1}(r\sqrt{-t})}{r\sqrt{-t}} \,, \end{split}$$

May 24, 2013

Properties of the in-medium nucleons

[H.C.Kim, P. Schweitzer, U.Y. PLB 718 (2012)]

Different quantities related to the nucleon EMT densities and their form factors: $T_{00}^*(0)$ denotes the energy in the center of the nucleon; $\langle r_{00}^2 \rangle^*$ and $\langle r_J^2 \rangle^*$ depict the mean square radii for the energy and angular momentum densities, respectively; $p^*(0)$ represents the pressure in the center of the nucleon, whereas r_0^* designates the position where the pressure changes its sign; d_1^* is the value of the $d_1^*(t)$ form factor at the zero momentum transfer.

$ ho/ ho_0$	$T_{00}^*(0)$ [GeV fm ⁻³]	$\langle r_{00}^2 \rangle^*$ [fm ²]	$\langle r_J^2 \rangle^*$ [fm ²]	p*(0) [GeV fm ⁻³]	r ₀ [fm]	d_1^*
0	1.45	0.68	1.09	0.26	0.71	-3.54
0.5	0.96	0.83	1.23	0.18	0.82	-4.30
1.0	0.71	0.95	1.35	0.13	0.90	-4.85

Pressure densities of the in-medium nucleons [H.C.Kim, P. Schweitzer, U.Y. PLB 718 (2012)]

FIG. 2: (Color online) The pressure densities $p^{+}(r)$ and $4\pi r^{2}p^{+}(r)$ as functions of r in the left and right panels, respectively. Notations are the same as in Fig. 1.

Pressure densities of the in-medium nucleons [H.C.Kim, P. Schweitzer, U.Y. PLB 718 (2012)]

FIG. 3: (Color online) The decomposition of the pressure densities $4\pi r^2 p^*(r)$ as functions of r, in free space ($\rho = 0$) and at $\rho = \rho_0$, in the left and right panels, respectively. The solid curves denote the total pressure densities, the dashed ones represent the contributions of the 2-derivative (kinetic) term, the long-dashed ones are those of the 4-derivative (stabilizing) term, and the dotted ones stand for those of the pion mass term.

Present applicability of the model [H.C.Kim, P. Schweitzer, U.Y. PLB 718 (2012)]

FIG. 5: (Color online) In the left panel, the correlated change of $p^+(0)$ and $T_{00}^+(0)$ drawn with ρ varied. In the right panel, the T_{00}^+/M_N^+ and ρ depicted as a function of ρ/ρ_0 . The maximal density is given as about 6.74 ρ_0 , above which the Skyrmion does not exist anymore. The filled circle on the solid curve represents the value of T_{00}^+/M_N^+ at normal nuclear matter density.

Summary

- Within the applicability range the model describes
 - □ the single hadrons properties
 - in separate state
 - in the community of their partners
 - as well as the properties of that whole community at same footing

Outlook

Extensions and applicability

- Nucleon tomography in nuclear matter [H.C. Kim, UY (arXiv:1304.5926)]
- NN interactions in nuclear matter
- Neutron stars
- Finite nuclei properties
 - Mirror nuclei
 - Exotic nuclei
- Nucleon-knock out reactions
- Vector mesons in nuclear matter
 [J.H.Jung, UY, H.C.Kim (arXiv:1212.4616), to appear in PLB]

Thanks for colaborators!

Yousuf Musakhanov (National University of Uzbekistan) Abdulla Rakhimov (Institute of Nuclear Physics, Tashkent) Fakir Khanna (Alberta University) Ulf-G Meissner (Bonn University) Andreas Wirzba (Institute of Nuclear Physics, Juelich) Hyun-Chul Kim (INHA University) Peter Schweitzer (University of Connecticut) Ju-Hyun Jung (Inha University)

Thank you for your attension!