Hydrodynamics in Heavy Ion Collisions

> Nagoya University Chiho Nonaka

December 11, 2007@APCTP, Korea

Contents

- Introduction
- Ideal Hydrodynamics
 - Success of hydrodynamics at RHIC
 - Limitation of hydrodynamics
 - Current status of ideal hydrodynamic models
 - initial conditions, equation of states, freezeout process
- Viscous Hydrodynamics
- Applications
 - Jets in medium
 - LHC
- Summary

Quark-Gluon Plasma

• QCD Phase Transition

Relativistic Heavy Ion Collider

Au + Au $\sqrt{s_{NN}}$ = 200 A GeV at Brookhaven National Laboratory

• Difficulties

Complicated process

initial state hydrodynamic expansion hadronization freeze-out

•QGP signature ?

hadron spectra two particle correlations flow (elliptic, direct) fluctuation (charge, multiplicity) electromagnetic probes.....

- SPS at CERN (Pb+Pb $\sqrt{s_{NN}} = 17 \,\text{GeV}$)
 - One of phenomenological models transverse momentum spectra O, Hanbury Brown - Twiss (HBT) O, elliptic flow X
 ex.hadron base event generator (RQMD, URASiMA....)

Perfect Fluid at RHIC

• Success of Ideal Hydrodynamic Models at RHIC

V2 vs multiplicity

Perfect Fluid at RHIC?

Centrality Dependence

Perfect Fluid at RHIC?

• Elliptic flow as a function of pseudorapidity

Forward/backward rapidity

Short life time?

Perfect Fluid at RHIC?

Elliptic Flow

- –Peripheral collisions
- -Forward/Backward rapidity

Hydrodynamic Models at RHIC

- Useful tool for experimental data
 - $-P_{\rm T}$, η -distributions, radial flow, anisotropic flow, HBT, jets
- Check List
 - Initial conditions, equation of states, freezeout process
 - Initial conditions
 - Glauber type, Huovinen, Kolb, Heinz, Teaney, Shuryak
 - Event Generator, CN, Socolwski, Grassi, Hama, Kodama...
 - Color Glass Condensate, Hirano, Nara...
 - pQCD + saturation model, Eskola, Honkanen, Niemi, Ruuskanen, Rasanen
 - String tube color flux tube, Csernai

Standard model for the initial transverse density profile

Initial energy density or entropy is taken from Wounded nucleon model: number of participants or collision scaling.

$$n_{part}(\boldsymbol{x}_{\perp}, \boldsymbol{b}) = T_{A}(\boldsymbol{x}_{\perp} + \boldsymbol{b}/2) \left[1 - (1 - \sigma_{NN}^{inel} T_{B}(\boldsymbol{x}_{\perp} - \boldsymbol{b}/2)/B)^{B} \right] + T_{B}(\boldsymbol{x}_{\perp} - \boldsymbol{b}/2) \left[1 - (1 - \sigma_{NN}^{inel} T_{A}(\boldsymbol{x}_{\perp} + \boldsymbol{b}/2)/A)^{A} \right]$$

 $n_{coll}(\boldsymbol{x}_{\perp}, \boldsymbol{b}) = \sigma_{NN}^{inel} T_A(\boldsymbol{x}_{\perp} + \boldsymbol{b}/2) T_B(\boldsymbol{x}_{\perp} - \boldsymbol{b}/2)$

$$T_{A}(\mathbf{x}_{\perp}) = \int dz \,\rho_{A}(\mathbf{x}_{\perp}, z) \qquad \rho_{A}(\mathbf{r}) = \frac{\rho_{0}}{1 + \exp[(r - R_{0})/a]}$$

sWN, eWN, sBC, wBC

Nara

Hydrodynamic Models at RHIC

- Useful tool for experimental data
 - $-P_{\rm T}$, η -distributions, radial flow, anisotropic flow, HBT, jets
- Check List
 - Initial conditions, equation of states, freezeout process
 - EoS dependence, Huovinen, Kolb, Heinz, Teaney, Shuryak...
 - Hadron gas
 - 1st order phase transition, Bag Model
 - Parametrized EoS based on Lattice QCD
 - Quasiparticle Model

EOS Dependence

Huovinen nucl-th/0505036

• Equation of states

EOS Dependence

Huovinen nucl-th/0505036

- Initial conditions are fixed.
 - Glauber Type: 0.75*sWN + 0.25*sBC
 - τ_0 =0.6 fm
- Freezeout conditions:chemical equilibrium

	They are	fixed	from	P _T s	pectra
--	----------	-------	------	------------------	--------

	EoS qp	$\operatorname{EoS} \mathbf{Q}$	EoS H	EoS T	
$\langle T_{fo} \rangle ~({ m MeV})$	141	130	134	130	- input
$\langle v_r angle$	0.47	0.47	0.49	0.49	
ϵ_x	0.058	0.033	0.056	0.034	

EOS Dependence

Huovinen nucl-th/0505036

Hydrodynamic Models at RHIC

- Useful tool for experimental data
 - $-P_{\rm T}$, η -distributions, radial flow, anisotropic flow, HBT, jets
- Check List
 - Initial conditions, equation of states, freezeout process
 - Freezeout process

Chemical freezeout, kinetic freezeout, final state interactions

- Chemical equilibrium, Huovinen, Kolb, Heinz...
- Partial chemical equilibrium, Hirano, Tsuda, Kolb, Rapp
- Continuous Emission Model, Socolwski, Grassi, Hama, Kodama
- Cascade model, Bass, Dumitru, Teaney, Shuryak, Nonaka, Hirano, Nara, Heinz...

Freezeout process in Hydro

Trajectories on the phase diagram

n_B/s=const

temperature and chemical potential of volume element of fluid

Partial Chemical Equlibrium

Hirano and Tsuda nucl-th/0205043
 Introducing chemical potential for each particle below T_{ch}

PCE with Initial V_T Kolb and Rapp nuch-th/0210222

Continuous Emission Model

Escaping probability Socolowski, Grassi, Hama, Kodama: hep-ph/0405181

$$\mathcal{P}(x,k) = \exp\left[-\int_{ au}^{\infty}
ho\sigma v d au'
ight]$$

• Distribution function

$$\begin{aligned} f(x,k) &= f_{free}(x,k) + f_{int}(x,k) \\ & \text{Interacting part} \end{aligned}$$

$$f_{free}(x,k) = \mathcal{P}f(x,k)$$

fluctuation in initial conditions + continuous emission model →HBT

Continuous Emission Model

Final State Interactions

Ex. In UrQMD final state interactions are included correctly.

Hydrodynamic Models

- Useful tool for experimental data
 - $\textit{P}_{\rm T}$, η -distributions, radial flow, anisotropic flow, HBT, jets
- Check List

	Initial	Freezeout	P _T	Anisotropic	
	Conditions	Process	distribution	Flow	
[1]	Glauber Type	Chemical Equilibrium	🙁 ex. proton renormalized	Solution Accidentally? by Hirano and Gyulassy	
[2]		Partial CE	Initial transverse flow?		
[3][4][5]		Cascade	Promising? V	iscosity	
[4]	CGC	Partial CE	\odot		
[4]		Cascade	Viscosity in early stage ?		

[1]Huovinen, Kolb, Heinz...[2]Hirano, Tsuda,Kolb,Rapp [3]Bass, Dumitru,[4]Hirano, Nara, Heinz...[5]CN, Bass

Realistic Hydro Model

• Hydro + Cascade Model

Bass, Dumitru, Teaney, Shuryak, Hirano, Nara, CN, Heinz....

- Viscosity in hadron phase
- Realistic freezeout process
- Final state interactions

3-D Hydrodynamic Model

Relativistic hydrodynamic equation

 $\partial_{\mu}T^{\mu\nu} = 0$ $T^{\mu\nu}$: energy momentum tensor

- Baryon number conservation

$$\partial_{\mu}(n_B(T,\mu)) = 0$$

Coordinates

$$(\tau, x, y, \eta)$$
: $\tau = \sqrt{t^2 - z^2}, \eta = \tanh^{-1}\left(\frac{z}{t}\right)$

- Lagrangian hydrodynamics
 - Tracing the adiabatic path of each volume element
 - Effects of phase transition on observables nucle
 - Computational time
 - Easy application to LHC
- Algorithm
 - Focusing on the conservation law

 $\partial_{\mu}(s(T,\mu)u^{\mu}) = 0, \ \partial_{\mu}(n_B(T,\mu)u^{\mu}) = 0$

Trajectories on the phase diagram

Lagrangian hydrodynamics

Parameters

- Initial Conditions
 - Energy density
 - $\varepsilon(x, y, \eta) = \varepsilon_{\max} W(x, y; b) H(\eta)$
 - Baryon number density

$$n_B(x,y,\eta) = n_{B\max}W(x,y;b)H(\eta)$$

Parameters

$$\begin{cases} \tau_0 = 0.6 \text{ fm/c} \\ \varepsilon_{\text{max}} = 40 \text{ GeV/fm}^3, n_{\text{Bmax}} = 0.15 \text{ fm}^{-3} \\ \eta_0 = 0.5 \sigma_{\eta} = 1.5 \end{cases}$$

 $v_{L}=\eta$ (Bjorken's solution); $v_{T}=0$

• Equation of State

1st order phase transition, T_c =160 MeV

 Switching temperature *T*_{SW}=150 [MeV]

Different from Pure Hydro !

	hydro	Hydro+
		UrQMD
$ au_0({ m fm})$	0.6	0.6
ε_{max} (GeV/fm ³)	55	40
n _{Bmax} (fm ⁻³)	0.15	0.15
η_0, σ_η	0.5, 1.5	0.5, 1.5

P_T spectra

• $P_{\rm T}$ spectra at central collisions

P_T Spectra (Pure Hydro)

Centrality Dependence

P_T Spectra for Strange Particles

Normalization is perfect!

P_T Spectra for Strange Particles

Hydro.....

$< P_T > vs mass$

• At mid rapidity

C.Nonaka

Distribution of # of Collisions

Distribution of # of Collisions

τ_f Distribution

- π, K: peak ~ 19 fm
- p, Λ: peak ~ 22 fm
- Multistrange particles small

Species dependenceBroad distribution

τ_f Distribution of B

τ_f Distribution of M

x_f Distribution

x_f Distribution II

→ HBT analyses work in progress

Collision Rate

v₂ in hadron phase ?

Quark number scaling of v₂

*v*₂: early stage of expansion

Reaction Dynamics in v₂ I

Reaction Dynamics in v₂ II

 $\tilde{\eta}$

Au+Au, sqrt(s)=200 GeV 0.06charged particles central 0.05 0.04 •Hydro+decay **5**° 0.03 ~ Hydro@ T_{SW} $\cdot v_2$ grows in hadron 0.02 phase a bit. PHOBOS Hydro+UrQMD 0.01 $\cdot V_2$ builds up in QGP Hydro+decay Hydro **`(**a) phase. Hydro@T_{sw} 0.0 -2 2 -6 -4 0 4

Mass Ordering in Elliptic Flow

Hirano et at. arXiv:0710.5795

Viscosity in Hydro

Viscous Relativistic Hydrodynamics

Teaney, Muronga, Heinz, Song, Chaudhuri, Baier, Romatschke, Wiedemann, Kodama, Koide

 Necessity of introduction of second order in entropy current Kunihiro-san's talk

stable 1st order relativistic dissipative hydrodynamics

Numerical calculation: shear viscosity

Causal Israel-Stewart formalism

 $P_{\rm T}$ spectra, elliptic flow, HBT ...

- perfect fluid? Viscous hydro
- fluctuation in initial conditions ex. elliptic flow
- equation of state ex. QCD critical point
- freezeout process: recombination?

Summary -- Applications

- Jets in Medium
 - Mach cone, ridge
- QCD critical point search
- LHC
 - Hydrodynamics works?

Hydrodynamics is a useful tool for understanding heavy ion physics!

