$\Lambda_{c} \text{ Enhancement from} \\ \textbf{Strongly Coupled QGP} \\$

arXiv:0709.3637 [nucl-th]

S. H. Lee, K. Ohnishi (Yonsei Univ.) S. Yasui (Yonsei Univ./National Taiwan Univ.) I.-K. Yoo (Pusan Univ.) C. M. Ko (Texas A&M Univ.)

3-14 Dec. 2007 Workshop on Hadron Physics at APCTP

Contents

- Where are diquarks?
- Diquark observation in QGP
- Discussion
- Summary

Diquarks

1. Construction of flavor multiplets of baryons Gell-Mann, Ida-Kobayashi, Lichtenberg *et al*.

Diquarks

- 1. Construction of flavor multiplets of baryons
- 2. Exotic structure of hadrons

 σ meson as tetraquark Jaffe

Diquarks

- 1. Construction of flavor multiplets of baryons
- 2. Exotic structure of hadrons
- 3. Dynamical description of diquark in baryons

Ebert, Feldmann, Friedlich, Reinhardt Nagata, Hosaka, Abu-Raddad,

Diquarks

- 1. Construction of flavor multiplets of baryons
- 2. Exotic structure of hadrons
- 3. Dynamical description of diquark in baryons
- 4. Lattice QCD

Alexandrou, de Forcrand, Lucini

Diquarks

- 1. Construction of flavor multiplets of baryons
- 2. Exotic structure of hadrons
- 3. Dynamical description of diquark in baryons
- 4. Lattice QCD
- 5. Dense matter QCD
 - Color Superconductivity Bose-Einstein condensate

Diquarks

- 1. Construction of flavor multiplets of baryons
- 2. Exotic structure of hadrons
- 3. Dynamical description of diquark in baryons
- 4. Lattice QCD
- 5. Dense matter QCD
- 6. Strongly coupled QGP (sQGP)
 - Color non-singlet bound states Shuryak, Zahed

Diquarks in sQGP

 Perfect fluid behavior
 ☑ Exp. Small viscosity Collective flow
 ☑ Theor. Analysis from AdS/CFT

2. Strong correlations
☑ c̄c bound state at T>> T_c
☑ Variety of bound states
qq, gg, QQ
☑ color non-singlet bound states ??
qq, qqq

11

What is an experimental observable for diquarks in sQGP?

What is an experimental observable for diquarks in sQGP?

Assumptions a. Bound states of diquarks in sQGP

What is an experimental observable for diquarks in sQGP?

Assumptions a. Bound states of diquarks in sQGP b. Diquark picture in heavy baryons *Qqq*

Heavy baryons (Qqq)

heavy quark (c or b): color spectator

In $m_{c,b} \rightarrow \infty$, short distance forces \square one-gluon exchange \square instanton-induced interaction are suppressed.

> H.J. Lipkin, PL70B, 113 (1977) R.L.Jaffe, PRD72, 074508 (2005)

Heavy baryons (Qqq)

heavy quark (c or b): color spectator

In $m_{c,b} \rightarrow \infty$, short distance forces \square one-gluon exchange \square instanton-induced interaction are suppressed.

> H.J. Lipkin, PL70B, 113 (1977) R.L.Jaffe, PRD72, 074508 (2005)

Diquarks decouple from heavy quark.

What is an experimental observable for diquarks in sQGP?

Assumptions a. Bound state of diquarks in sQGP b. Diquark picture in heavy baryons *Qqq*

1. Stability of diquark

color-spin interaction

Diquark observation in QGP Diquarks in QGP

- 1. Stability of diquark
 - $\square 3_{f}^{*}$ diquark is a bound state.
- 2. Color neutralization of diquark

- 1. Stability of diquark
 - $\square 3_{f}^{*}$ diquark is a bound state.
- 2. Color neutralization of diquark

- 1. Stability of diquark
 - $\blacksquare \mathbf{3}_{\mathbf{f}}^*$ diquark is a bound state.
- 2. Color neutralization of diquark
 - $\square 3_{f}^{*}$ diquark (*ud*) \Leftrightarrow heavy baryon (Λ_{c})

1. Stability of diquark $\square 3_{f}^{*}$ diquark is a bound state. 2. Color neutralization of diquark $\square \mathbf{3}_{f}^{*}$ diquark (*ud*) \Leftrightarrow heavy baryon (Λ_{c}) 3. Hadronization process for Λ_c With diquark Without diquark S.Yasui, Chiral07, Osaka

1. Stability of diquark $\square 3_{f}^{*}$ diquark is a bound state. 2. Color neutralization of diquark $\square \mathbf{3}_{f}^{*}$ diquark (*ud*) \Leftrightarrow heavy baryon (Λ_{c}) 3. Hadronization process for Λ_c With diquark Without diquark **2-body** collision 3-body collision **Enhanced process**

S.Yasui, Chiral07, Osaka

- 1. Stability of diquark
 - $\blacksquare \mathbf{3}_{f}^{*}$ diquark is a bound state.
- 2. Color neutralization of diquark
 - $\square 3_{f}^{*}$ diquark (*ud*) \Leftrightarrow heavy baryon (Λ_{c})
- 3. Hadronization process for $\Lambda_{\rm c}$
 - \square 2-body (*ud*)*c* collision > 3-body *udc* collision

- 1. Stability of diquark
 - $\blacksquare \mathbf{3}_{f}^{*}$ diquark is a bound state.
- 2. Color neutralization of diquark
 - $\square 3_{f}^{*}$ diquark (*ud*) \Leftrightarrow heavy baryon (Λ_{c})
- 3. Hadronization process for $\Lambda_{\rm c}$

 \square 2-body (*ud*)*c* collision > 3-body *udc* collision

Diquark (ud) enhances heavy baryon (Λ_c) yield.

Numerical estimate

1. fire-cylinder model p π te das restrictes de 1-01-73 http:// QGP T_c-170 MeV Localdi Perete

fire-cylinder model (thermal distribution T_c~170 MeV)
 quark/diqaurk mass at T_c
 ☑ quark m_u = m_d~ 300 MeV
 ☑ diquark m_{ud} = ???

1. fire-cylinder model (thermal distribution T_c ~170 MeV) 2. quark/diqaurk mass at T_c \square quark $m_u = m_d \sim 300$ MeV \square diquark $m_{ud} = m_u + m_d - \Delta E_{color-spin}$ a. Threshold $\Delta E_{color-spin} \sim 0$ MeV b. Most deeply $\Delta E_{color-spin} \sim 150$ MeV

1. fire-cylinder model (thermal distribution T_c ~170 MeV) 2. quark/diqaurk mass at T_c \square quark $m_u = m_d \sim 300$ MeV \square diquark $m_{ud} = m_u + m_d - \Delta E_{color-spin} \sim 450-600$ MeV a. Threshold $\Delta E_{color-spin} \sim 0$ MeV b. Most deeply binding $\Delta E_{color-spin} \sim 150$ MeV

fire-cylinder model (thermal distribution T_c~170 MeV)
 quark/diqaurk mass at T_c

 quark m_u = m_d ~ 300 MeV
 diquark m_{ud} = m_u+m_d-ΔE_{color-spin} ~ 450-600 MeV
 the coalescence model
 hadron yield ∝ (quark thermal distribution in QGP) ×(Wigner function of hadron)

Greco Ko Levai PRL90 (2003)

P)

Numerical estimate

- $\Lambda_{\rm c}$ yield from the coalescence model
 - $N_{\Lambda_{c}(\text{cud})}^{\text{coal}} = g_{\Lambda_{c}(\text{cud})} \int_{\sigma_{C}} \prod_{i=1}^{n=3} \frac{p_{i} \cdot d\sigma_{i} d^{3} \mathbf{p}_{i}}{(2\pi)^{3} E_{i}} f_{q}(x_{i}, p_{i})$ $\times f_{\Lambda_{c}}^{W}(x_{1}..x_{n}; p_{1}..p_{n}), \quad \begin{array}{l} \text{quark thermal distribution} \\ \text{Wigner function of hadron} \end{array}$
- 3-body collision (without diquark)

$$f_{\Lambda_c(\mathrm{cud})}^{\mathrm{W}}(x;p) = 8^2 \exp\left(-\sum_{i=1}^2 \frac{\mathbf{y}_i^2}{\sigma_i^2} - \sum_{i=1}^2 \mathbf{k}_i^2 \sigma_i^2\right)$$

2-body collision (with diquark)

$$f_{\Lambda_{c}(c[ud])}^{W}(x;p) = 8 \exp\left(-\frac{\mathbf{y}^{2}}{\sigma_{c[ud]}^{2}} - \mathbf{k}^{2}\sigma_{c[ud]}^{2}\right)$$

Numerical estimate

- $\Lambda_{\rm c}$ yield from the coalescence model
 - $N_{\Lambda_{c}(\text{cud})}^{\text{coal}} = g_{\Lambda_{c}(\text{cud})} \int_{\sigma_{C}} \prod_{i=1}^{n=3} \frac{p_{i} \cdot d\sigma_{i} d^{3} \mathbf{p}_{i}}{(2\pi)^{3} E_{i}} f_{q}(x_{i}, p_{i})$ $\times f_{\Lambda_{c}}^{W}(x_{1}..x_{n}; p_{1}..p_{n}), \quad \begin{array}{l} \text{quark thermal distribution} \\ \text{Wigner function of hadron} \end{array}$
- 3-body collision (without diquark) $N_{\Lambda_{c}(\text{cud})}^{\text{coal}} \simeq g_{\Lambda_{c}(\text{cud})} N_{c} N_{u} N_{d} \prod_{i=1}^{2} \frac{(4\pi\sigma_{i}^{2})^{3/2}}{V_{c}(1+2\mu_{i}T_{C}\sigma_{i}^{2})}$

2-body collision (with diquark)

$$N_{\Lambda_c(c[ud])}^{\text{coal}} \simeq g_{\Lambda_c(c[ud])} N_c N_{[ud]} \frac{(4\pi\sigma_{c[ud]}^2)^{3/2}}{V_c(1+2\mu_{c[ud]}T_C\sigma_{c[ud]}^2)}$$

1. fire-cylinder model (thermal distribution T_c -170 MeV) 2. quark/diqaurk mass at T_c \square quark $m_u = m_d - 300 \text{ MeV}$ \square diquark $m_{ud} = m_u + m_d - \Delta E_{color-spin} - 450-600 \text{ MeV}$ 3. the coalescence model \square hadron yield \propto (quark thermal distribution in QGP) ×(Wigner function of hadron) 4. normalization by Λ_c/D^0 $\square D^0$ is not affected by diquark correlation in QGP.

without diquark

Comparison with another phenomena

<u>Without</u> diquark correlation 1. statistical model : $\Lambda_c/D^0 = 0.09$

 $\exp(-(m_{\Lambda_c} - m_{D^0})/T_{\rm C}) \simeq 0.09$

Comparison with another phenomena

Without diquark correlation

1. statistical model : $\Lambda_{\rm c}/D^0 = 0.09$

2. *pp* collisions : $\Lambda_c/D^0 = 0.159$ (SELEX)

Comparison with another phenomena

<u>Without</u> diquark correlation 1. statistical model : $\Lambda_c/D^0 = 0.09$ 2. *pp* collisions : $\Lambda_c/D^0 = 0.159$ (SELEX) 3. *B* decay : $\Lambda_c/D^0 = 0.03$

44

Experiments

1. much abundance of *c* quarks in heavy ion collisions 1.1. estimate by initial hard scattering of nucleons $N_c = 3$ by Au+Au collisions at $s_{\rm NN}^{1/2} = 200$ GeV $N_c = 20$ by Pb+Pb collisions at $s_{\rm NN}^{1/2} = 5.5$ TeV

Experiments

1. much abundance of *c* quarks in heavy ion collisions 1.1. estimate by initial hard scattering of nucleons $N_c = 3$ by Au+Au collisions at $s_{\rm NN}^{1/2} = 200$ GeV $N_c = 20$ by Pb+Pb collisions at $s_{\rm NN}^{1/2} = 5.5$ TeV 1.2. free *c* quarks in QGP $\overline{c}c$ pairs are resolved as J/ψ suppression

Experiments

1. much abundance of c quarks in heavy ion collisions 1.1. estimate by initial hard scattering of nucleons $N_c = 3$ by Au+Au collisions at $s_{NN}^{1/2} = 200 \text{ GeV}$ $N_c = 20$ by Pb+Pb collisions at $s_{\rm NN}^{1/2} = 5.5$ TeV 1.2. free c quarks in QGP $\overline{c}c$ pairs are resolved as J/ψ suppression 2. enhanced tracking system for charmed hadrons sensitivity to short lifetime ($c\tau$ -60mm) ALICE at LHC STAR and PHENIX at RHIC 48 S.Yasui, Chiral07, Osaka

Summary

- Diquarks in QGP enhance $\Lambda_{c,b}$ yield from heavy ion collisions.
- We propose to measure Λ_c/D^0 in LHC and RHIC.
 - \square New way to observe the existence of QGP.
 - ☑ Experimental approach to study diquark correlation.
 - ☑ Diquark structure in heavy baryons with single heavy quark.