KOREA UNIVERSITY

Introduction to the Nuclear Physics Group of Korea University & Korean Contribution to the CMS Heavy-Ion Program

Byungsik Hong *Korea University*

December 14, 2007

Summary of Present Activities

- Heavy-ion collision experiments from intermediate to ultra-relativistic beam energies
 - $\sqrt{s_{NN}}$ = 5.5 TeV : CMS at LHC/CERN
 - $\sqrt{s_{NN}}$ = 200 GeV : PHENIX at RHIC/BNL
 - $E_{beam} \leq 2A \text{ GeV}$: FOPI at SIS18/GSI
 - $E_{beam} \leq 30A \text{ GeV}$: CBM at SIS300/GSI (future)
- Detector R&D and Applications
 - Muon Trigger RPCs for CMS and PHENIX
 - ToF RPCs for FOPI and CBM
 - Thermal Neutron Detectors
 - Animal PET Development

CMS at LHC/CERN

Detectors

- Construction of endcap RPCs
 - (More details in the next few pages)

Physics

- **J**/ ψ and γ productions via dimuons
- B-meson production via the decayed J/ψ's into dileptons
- b-tagging jet production
 - (To be presented later in this talk)

CMS Endcap RPCs

The nuclear & high-energy physics groups of Korea University have been active for the CMS(Compact Muon Solenoid) Collaboration of LHC at CERN since 1997.

CMS Endcap RPCs

CMS Endcap RPCs

1. Function : L1 muon triggers 2 wings (RE+, RE-) 4 stations (RE1, RE2, RE3, RE4) **Pseudo rapidity coverage :** $0.9 < \eta < 2.1$ (1.6) η segmentations : 10 (6) 2. Total # of RPCs : 756 (432) Total # of FEBs : 2,268 (1,296) Total # of channels : 85,248 (41,472) 3. By March 2007, the gap production for phase I

 $(0.9 < \eta < 1.6)$ was completed for the first operation of CMS in 2008.

A Brief Research History

- 1. Fundamental studies to develop the endcap RPCs (1997~)
 - 1) Beam tests by using high intensity muon beams at CERN
 - 2) Cosmic ray muon tests in Korea
 - 3) Long term aging studies by γ 's and neutron beams in Korea
- 2. Design of double gap RPCs for the endcap region (2000~2003)
 - 1) Gas gap design
 - 2) Services for HV, LV, gas, electronics on the chamber level
- 3. Manufacturing the production facilities at Korea Univ. (2000~2003)
 - 1) Gap and chamber production facilities
 - 2) Testing facilities for the quality assurance control
- 4. Mass production of the endcap RPCs (2004~)
 - 1) Phase I production (0.9 < η < 1.6, total 432 gaps) was completed.
 - 2) Phase II production (1.6 < η < 2.1) is expected to start next year.

Performance of Korean RPCs

Characteristics	CMS Requirements	Test Results the world best quality
Time Resolution	< 3 ns	< 1.5 ns
Efficiency	> 95 %	> 95 %
Rate Capability	> 1 kHz/cm ²	> 1 kHz/cm ²
Noise Rate	< 15 Hz/cm ²	< 10 Hz/cm ²
Plateau Region	> 300 V	> 400 V

December 14, 2007

Photo taken in Nov. 2006

December 14, 2007 RPC1+CSC1 installed successfully

PHENIX at RHIC/BNL

Physics

- Quarkonium production via dimuon channels
- Flow of heavy vector mesons
- Feasibility study of measuring chi_c

Detectors

- Construction of the muon trackers (CSC)
- In collaboration with the high-energy physics group of Korea University, we will produce all RPC gas gaps for the muon trigger upgrade. (More details in next pages)
- In collaboration with Yonsei, Ewha, and Myungji Universities, we participate in the NCC upgrade R&D.

PHENIX RPC Locations

December 14, 2007

Heavy Ion Meeting

£

KOREA UNIVERSITY lengths in mm

theta in deg.		RPC1a		RPC1b		RPC2		RPC3	
1905	theta (deg)	Radius	width	radius	width	radius	width		width
possible						5280.2			
	34.36	933.2	773.1	1016.8	842.3	4675.4	୍ଟ୍	.05	•
ring 8						strips: /	100	2	
	31.60	strips: 181.	4 x 12.1 (64)	strips: 197.	7 x 13.2 (64)		0 ()a	
ring 7							0 S		
	28.84	751.8	622.8	819.1	C.	V V	20.3	4991.4	4135.0
ring 6						· • • •	. d.8 (64)	strips: 554	2 <i>x 64.6 (</i> 64)
	26.09	strips: 164.3 x 9.7 (64)		strips: 17	NV.		2773.9	4437.2	3675.9
ring 5						.ρs: 298.9 x 48.8 (57)		strips: 528.6 x 64.6 (57)	
	23.33	588.7	487.7	~ 	0	2949.4	2443.4	3908.6	3238.0
ring 4				101	d .a.	strips: 382.	7 x 38.2 (64)	strips: 507.	1 x 50.6 (64)
	20.57	strips: 151.	1 x 1.F	N S	.o (32)	22566.8	2126.4	3401.5	2817.9
ring 3				0'0		strips: 369.	1 x 38.2 (56)	strips: 493.	3 x 50.6 (56)
	17.81	· ·	2 (+17.9	395.9	2197.7	1820.6	2912.3	2412.7
ring2		9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			strips: 357.	8 x 28.4 (64)	strips: 474	2 x 37.7 (64)
	15.0	10'		strips: 153.	6 x 12.4 (32)	1839.8	1524.2	2438.1	2019.8
ring1		アーで	0			strips: 3548.7 x 28.4 (54)		strips: 462.1 x 37.7 (54)	
	ne	. 23	246.6	324.3	268.6	1491.1	1235.3	1976.1	1637.0
possi	\` .	2				1468.4		1926.4	
	×O	split gap: r	ing 4 and 5	split gaps: r + ring 6	ring 2 and 3 6.and 7	no spli	it gaps	no spli	t gaps

* strip leng and width consider full acceptance in theta and phi in the octants (i.e. no loss due to readout and boxes) * strip widths are determined at the outer radius of two paired rings

PHENIX Schedule

- ~Feb. 2008
 - Production of complete half octant (prototype D)
 - ~July 2008
 - Complete assembly and testing RPC3
- 2009
 - Complete the installation of all RPCs
 - 2009-2012
 - Running at \sqrt{s} = 500 GeV
 - Projected yield of JLdt ~ 950 pb⁻¹

FOPI at SIS18

Physics

Nuclear stopping power and radial flow

- Phys. Rev. C 66, 034901 (2002); Phys. Rev. Lett. 84, 1120 (2000), Phys. Rev. C 57, 244 (1998); Nucl. Phys. A 721, 317 (2003)
- Beam energy dependence in preparation

Pion production and resonance analysis

• Phys. Rev. C 71, 034902 (2005); Phys. Lett. B 407, 115 (1997)

Strangeness production and in-medium effects

- Nucl. Phys. A 625, 307 (1997)
- Charged kaon flow in preparation

Detectors

- Multigap Resistive Plate Chambers for the Time-of-Flight Detectors
 - (This is also a part of the CBM ToF detector R&D.)
- Upgrade and maintenance of the Central Drift Chamber

FOPI Detector

New 26 RPC super modules were installed in August 2007, and are being operated.

Multi-strip Multi-gap RPC

New MM RPC Time-of-Flight system

- Completed R & D (2000-2005)
- 6 m² active area and 4800 electronic channels
- Gas: $C_2F_4H_2$ /isobutane/SF₆ = 85/5/10
- Time resolution (σ_t) < 75 ps
- Efficiency (ε) > 95 %

December 14, 2007

Multi-strip Multi-gap RPC

Neutron Sensitive RPCs

Detector	Structure	Read	Operating
	(electrodes)	Out	Mode
Gd-RPC/	Single Gap	2D-	Streamer
Plain-RPC	(bakelite)	Strips	
Gd-RPC/ Plain-RPC	Double Gap (bakelite)	Pad	Streamer
LiF-RPC	Double Gap (glass)	Pad	Low Gain Avalanche

Neutron Sensitive Material

Interesting isotopes are about 30% in natural Gd₂O₃. Ref.) M. Abbrescia et al., NIMA 533 (2004) 149.

Mass No.	%
152	0.2
154	2.2
155	14.8
156	20.5
157	15.7
158	24.8
160	21.8

Neutron Sensitive Material

 $n + {}^{6}\text{Li} \rightarrow \alpha + {}^{3}\text{H}$ (Q = 4.78 MeV, E_{α} = 2.05 MeV, E_{H} = 2.73 MeV)

December 14, 2007

Neutron Sensitive RPCs

Analyzed by Hyun Chul Kim, Ji Hyun Kim, and Rongjiang Hu

Neutron Sensitive Hybrid Plastic Scintillator Detectors

Neutron Sensitive Hybrid Plastic Scintillator Detectors

Korean Contribution to the CMS Heavy-Ion Program

Korean CMS Heavy Ioner's

Korea Univ. (quarkonium and jet)

Prof. Kwang Souk Sim Prof. Byungsik Hong Dr. Gopika Sood Dongho Moon Jihyun Kim Hyunchul Kim <u>Univ. of Seoul</u> (jet Reco. and γ-jet)

Physics Team

Prof. Inkyu Park Dr. Geunbum Kim Garam Hahn <u>Chonbuk Nat'l Univ.</u> <u>(?)</u> Prof. Eunjoo Kim

Computing Team

<u>Tier2 @ SSCC</u> Prof. Inkyu Park (Director) Dr. Jongkwan Woo (Coordinator) Jinwoo Park (HW), Garam Hahn (SW) Yusang Kim (Support), Minkyu Choi (Web, Twiki)

Summary of Analysis Topics

- b-tagging jet analysis (Dr. Gopika Sood) B-meson production via secondary *J/ψ*'s (J.H. Kim) Quarkonium production and muon reconstruction (D.H. Moon) Gamma-Jet study (G.R. Hahn)
- Jet reconstruction in Heavy Ion data (Prof. I.C. Park)

b-tagging Jet in Heavy Ion

Motivation

- b-tagging jet: CP violation, Higgs search
- Important for the heavy quark production and quenching in heavy-ion collisions

Method

- Large impact parameter due to wider jet shape
- Probability lifetime tagging method, etc.

Results

Dr. G. Sood (Korea Univ.)

Quarkonium Production

Motivation

- Quarkonium production (Y and J/ψ families)
 - Stepwise suppression in QGP?
- Methods
 - Effect of the L1/L2/L3 dimuon trigger
- D.H. Moon (Ph.D. student, Korea Univ.)

B-meson Production

Motivation

 Heavy flavor production and radiative quark energy loss in medium

Goal

- B meson reconstruction via secondary J/ψ's
- Measure the yields and E/pT spectra
- J.H. Kim (Ph.D. student, Korea Univ.)

Gamma-jet Analysis

Motivation

- jet quenching found at RHIC
 - Mono jet at LHC?
- photons will not be influenced by partonic matter
 - Provides the reference of the jet quenching systematics
- Service works
 - Jet algorithm implementation
 - Jet performance benchmark
 - Jet Pt distribution, multiplicity
- Goal
 - Definition of direct photons
 - Reconstruction of jet and gamma-jet events
 - G.R. Hahn and Inkyu Park (Univ. of Seoul)

Gamma-jet Analysis Flow Chart

KOREA UNIVERSITY

Results so far

Directory: /pnfs/cmsaf.../../gammajets/ Files: pythia, pythia_mixed, pyquen, pyquen mixed

December 14, 2007

E^{GEN}_T [GeV]

200

 $\begin{array}{l} E_{T}^{GEN} \, \text{Seed}(2GeV) \\ E_{T}^{GEN} \, \text{Seed}(5GeV) \\ E_{\tau}^{GEN} \, \text{Seed}(10GeV) \end{array}$

150

 E_{T}^{GEN} Seed(2GeV) E_{T}^{GEN} Seed(5GeV) E_{T}^{GEN} Seed(10GeV)

150

200

E_T [GeV]

Pythia Et Distribution of Jets

of Jet 1000

800

Summary

(Part I)

Presently, very active research programs are progressing both in relativistic heavy-ion collisions and the detector developments in the nuclear physics group of Korea University.

(Part II)

Presently, very active analysis programs for heavyion collisions and the RPC construction project by Koreans are progressing in CMS.