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Relevance of ads/qcd

« String scale ~ 10™{18} GeV
e« QCD ~ 100 MeV

 Why string theory CAN be relevant to
QCD at all?



dalnswerl

 Since the string (plank) scale decouple
in a conformal AdS/CFT ;
This happens since we are looking at a
“Near horizon limit”.

* For non—conformal case, it comes with
combination with other large number N.



caution

« AdS/nQCD
» Seeking tor the Universality:
Viscosity/entropy density

Hydrodynamic regime (high temperature
small frequency /wave number regime.)
IS useful.



2nd m
to partic

essage
e physics

from String theory

 Flavor Is gauge symmetry in higher dim.
 Seeking for experimental evidence Is

important.



sQGP in RHIC

« RHIC found Unexpected strong nature
of interaction in high energy collision.

 Only Lattice or other non—perturbative
method can do something for it.

e String duality is one of such method.



Color/Flavor Unification



Open/closed duality

* Open string = gauge theory —
» Closed string—> gravity O
* Cylinder diagram
—>quantum gauge/classical gravity duality




D—brane AdS/CFT

D—-brane= closed string soliton whose
vibration Is restricted as open string
vibration.

Multiple D—branes

Open st.2>U(N)

Closed st.—2extra—dim.=>Holographic
warped transverse space—> AdS

Remark: Color/Flavor Unification.



Holographic relation

YM-=>4d Boundary(global co—ord.)

5d AdS bulk

.
,—S5[¢s]

b5 (r=00)=d¢4 — / (]()_l {:‘X})(—S[()_]ED




ransport coefficients
N
=xpanding Medium




/dea of calculation

« Kubo—formula: TC ~ 2pt fct.

» Use ads/cft to calculate 2pt fct.
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RHIC and

3jorken set up

.

Relativistically accelerated heavy nuclei

Central Rapidity Region

44—

Velocity of light

—

Velocity of light

After collision

* one—dimensional expansion.



Bjorken System

Longitudi

All partic

nal Position €—->velocity.
es has common proper time

- choose ~ (7,y) as coordinate

(xV, 2t 2%, 2%) = (7 coshy, Tsinhy, 22, 27).

;2', V, X, X°)

Proper-time \

ds® = —dz® +z°dy” +dx}

Rapidity



3jorken frame

« a frame following the particle
ds’ = —dz° + z°dy’ + dx?

Bjorken frame Is comoving frame.
. Milnor Universe



Relativistic Hydrodynamics

 Bjorken frame=local rest frame
where u=(1,0,0,0)

(p 0 0 0)
0 zs-p 0 O
e | T
Tuv simplies “=l0 0 p o
0 0 0 p
Hydro eqg



Gravity dual of Bjorken system

 FInd a solution of Einstein eq. in AdS
with zero 5d energy—momentum tensor.
with falling horizon as BC.

 Use Hologrphic renormalization to find
the relation of 5d metric and boundary
energy momentum tensor.

 Such sol. found by Janik+Peschansky
Such sol. with viscousity found by
SJS +Nakamura



ds? =

Janik—Peschansky sol.
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horizon 1s located at v = 1 or 2 ~ 7
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- Falling Horizon solution as desired!




Quasi—static Form of metric

introducing the coordinate change
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In this transformed metric
horizon is no longer moving away in the fifth direction
expanding in

the y direction and contracting in the transverse direction



Langevin eq.

dx; D
dp;

= &(t) — nppi (&i(1)&; (1) = ko o(t — 1)

; —

drag and fluctuation coeflicients

dt

K
IMT

np can be related in turn to the diffusion coeflicient

Einstein relation ; np =

T 217

D — _
Mnp K




Nolse v.s Force

/dt /dt" (&(1)E;(t)) = (time) X K 05 /dt/dt

K= / dt (F,(t)F,(0)) .



String fluctuation in the frame
following a particle

0X' =¢(t u) (exp(i [ F(1)§(1))) = exp(iSal€]).
Stat—' méﬂ‘f Boundary

“6

Horizon




; Nambu-Goto action 1s
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Reduced Boundary action

32 )\T3t -
Sfbounda.rjy' — l - 0/ f t “)d :(t U)H (%
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—g.of M for W (u)

3u® + 1 o2
o Oy W (u
2uf(u) (u) + 7

02U, (u) -, (u) =0

where 1 = i

Near the horizon the solution behaves as

U, ~ (1 . __.u!)iz'mﬁ ?

minus choice corresponds to the infalling boundary condition.



Retarded Green Function
And Boundary condition

C;R(w‘) —

32V, |
o7 \/_ 0“0 f ( H) \)j w ("E.(.-)au_ . w(“) '

b —

Need Infalling boundary condition for Yu(u)

C. P. Herzog and D. T'. Son,



Scheme of Calculation

AdS/CFT correspondence (exp(i / F(t)§(t))) = exp(iSalg])-

Wightman function  G(t,,ty) =

(F(t1)F(ty) + F(t2) F(th))

b | —

G(w) = —coth%hnG’R(w)

C. P. Herzog and D. T. Son, hep-th/0212072



The key problem

For the retarded Green’s function.

we need the wave function near zero satisfying

infalling boundary condition at the horizon.

Infalling fcts are
u=0 Needed here

horizon Infalling fcts are
easily found here




Stratege of work

First we find two independent solutions near the horizon

\I»'H — (l )—im/4 1 (l ) ino?

T —_— E( Z{ + & @
o 8i + 4w

qu,ﬂut — ( 11! W, ) ) '

UH . is the infalling solution

these solutions are valid for all o



Near the boundary (u ~ 0)

R R 3 w'\ -,
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take the near-horizon wave-function U ()
as the initial data

numerically integrate it to the boundary

solution is expressed as a linear sum of  hasis PP , and U8,

)

w,in

(u) U4 Alllfal(u) + B‘lifﬂu(u)

A and B are complex numbers determined numerically.



Normalization of wave function

we have to normalize W such that it goes to 1

normalized wave function with correct boundary conditions

is U, = A "WH ()

W,

B
L w(u) — 11!5’1(-3_(__) + Z IJE,O(:E'(’)r
which readily yields TIm fw 111_%;(-z.«.'-)aull'w.(-u)] — g ImB
Vu u=0

with B = ﬁ

h S



Now the Wightman function G(w) is given by

3V 3T W 3. -
G(w) = mcoth— | | = ImB(w)
2 21 2
while A is casily accessible = B is not.

. . . . N B /. B
taking the imaginary part of — Welu) = W5, (u) + W),

R _A_llllim(u)_
N O

then we evaluate it at any point, say, u = 1.



Vo) w =1

we need to numerically integrate from the boundary
Therefore we get the numerical recipe:

P (u=1—¢)

W.in

‘I’Em(“ 4ak0) - ‘I’f,u(“- H:1)

ImB = Im
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4
(a) (b)
N _ ~ G(w) — 3|’ ~ G(T.s)
Figure 1: Force-Force decorrelator: (a) G(w) = [%ﬁﬁ%m] (b) G(T,s) = [37#\/?1"5170}

The dashed red line: discrete Fourier transform of (a). The dotted blue line: the divergent
contribution alone. The solid line: the total result.]



Decorrelation time

decorrelation time follows readily from the dashed red curve

2
m TU .

tp ~

‘T'his time compares favorably with
lowest quasi-normal mode " associated to string fluctuations
i~ 2.69 — 2.29i.

This yields a decorrelation time of order .44/, which is comparable to our 0.64/Tj



force-force decorrelation time. denoted by 0t. is

which is the natural time dependent temperature, 1'(7)



Momentum correlation and
Diffusion constant

(Ap(t)*) = ((p(t+ At) — p(t))*)

| t+AT t+ At t+At 00
g+ + t —00

3 A
5” )\T tOT
(Ap(r)?) = mVAT =L = K(r) A

(;,ﬁ:(’r) = W%\//:_OTE’ = VT2 (T) \

r(7) is the time-dependent momentum diffusion constant.




equilibration i the diffusion regime.

o 1 d [T " _ . _ _K)
1) = a7, AR =




Diffusion %ate

we need two inputs: 7(7) and (v(7)?).

VN (7)? | T(+
n(r) = 2][( ) < u(r)? >= I'(7)

D(1)+a 773D(1) — b 773 =0,

with a = nory> and b = Tyry"” /M




Solution

b . a1y
D(T) = ;rlm -+ D((_))e_'?’“"rl’g

it shows how the diffusion rate for a quark changes in an expanding
At short times it is D(0)

5
; VAT (T)

at large times  D(7)

with an adiabatically changing temperature.

Cross over Is Exponential



Conclusion

 We considerred Diffusion of heavy quark in a
expanding medium

 |[n comoving frame time dependent diffusion
problem is captured in the retarded Green
function, which is calculated by AdS/CFT

 Equilibrium is reached exponentially fast.
With time scale  + ~ 1/y3

7/T0 = (1/31070)".
At RHIC 75 &~ 1 fm so that 7/79 =~ 1/



Hankel transform

dw
C(t "'l(.-) - / 9

W, (u) is normalized such that ¥ (0) = 1. tH fz)(wf)

1TW

2

tH (wt) U, (1) Eo(w)

assume the following 'completeness relation’

| : : 1 .
E/ dt tHf‘z)(;ut)Hfz)(—w’t) ~ :O(w — w').

Jodt t], (wt)J, (W't) = Lo(w — o)



Hydrodynamic Limit «—9
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For general w, we have to resort to numerical methods.



