Status of AdS/QCD

SangJin Sin (Hanyang) @YP-APCTP08

0707.0601 KY.Kim, SJS, I.Zahed

QCD phase diagram

Relevance of ads/qcd

- String scale $\sim 10^{18}$ GeV
- QCD \sim 100 MeV
- Why string theory CAN be relevant to QCD at all?

answer

- Since the string (plank) scale decouple in a conformal AdS/CFT; This happens since we are looking at a "Near horizon limit".
- For non-conformal case, it comes with combination with other large number N.

caution

- AdS/nQCD
- Seeking for the Universality: Viscosity/entropy density

Hydrodynamic regime (high temperature small frequency /wave number regime.) is useful.

2nd message to particle physics from String theory

- Flavor is gauge symmetry in higher dim.
- Seeking for experimental evidence is important.

sQGP in RHIC

- RHIC found Unexpected strong nature of interaction in high energy collision.
- Only Lattice or other non-perturbative method can do something for it.
- String duality is one of such method.

Color/Flavor Unification

Open/closed duality

- Open string \rightarrow gauge theory
- Closed string→ gravity
- Cylinder diagram
 - →quantum gauge/classical gravity duality

D-brane AdS/CFT

- D-brane= closed string soliton whose vibration is restricted as open string vibration.
- Multiple D-branes :

- Open st.→U(N)
- Closed st.→extra-dim.→Holographic warped transverse space→ AdS Remark: Color/Flavor Unification.

Holographic relation

YM→4d Boundary(global co-ord.)

Transport coefficients in Expanding Medium

Idea of calculation

- Kubo-formula: TC ~ 2pt fct.
- Use ads/cft to calculate 2pt fct.

Finite temperature YM ~ AdS Black hole

Expanding boundary Medium ←→Falling horizon (conformal invariance)

RHIC and Bjorken set up

Relativistically accelerated heavy nuclei

Central Rapidity Region

After collision

• one-dimensional expansion.

Bjorken System

Longitudinal Position $\leftarrow \rightarrow$ velocity. All particles has common proper time $\rightarrow choose \sim (\tau, y)$ as coordinate

$$(x^0, x^1, x^2, x^3) = (\tau \cosh y, \tau \sinh y, x^2, x^3).$$

 $\underbrace{(\tau, y, x^2, x^3)}_{\text{Proper-time}} ds^2 = -d\tau^2 + \tau^2 dy^2 + dx_{\perp}^2$

Bjorken frame

• a frame following the particle

$$ds^2 = -d\tau^2 + \tau^2 dy^2 + dx_\perp^2$$

•Bjorken frame is comoving frame.

: Milnor Universe

Relativistic Hydrodynamics

 Bjorken frame=local rest frame where u=(1,0,0,0)

$$T_{\mu\nu} \text{ simplies !} \qquad T_{\mu\nu} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & \tau^2 p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Hydro eq. $\nabla^{\mu}T_{\mu\nu} = 0 \quad \Rightarrow \quad \frac{d\rho}{d\tau} = -\frac{4}{3}\frac{\rho}{\tau}$

Gravity dual of Bjorken system

- Find a solution of Einstein eq. in AdS with zero 5d energy-momentum tensor. with falling horizon as BC.
- Use Hologrphic renormalization to find the relation of 5d metric and boundary energy momentum tensor.
- Such sol. found by Janik+Peschansky Such sol. with viscousity found by SJS +Nakamura

Janik-Peschansky sol.

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-\frac{(1-v^{4})^{2}}{(1+v^{4})} d\tau^{2} + (1+v^{4}) \left(\tau^{2} dy^{2} + dx_{\perp}^{2}\right) + dz^{2} \right]$$
$$v \equiv \frac{z}{(\tau/\tau_{0})^{\frac{1}{3}}} \varepsilon^{\frac{1}{4}} , \qquad \varepsilon \equiv \frac{1}{4} (\pi T_{0})^{4} ,$$

horizon is located at v = 1 or $z \sim \tau^{1/3}$

→ Falling Horizon solution as desired!

Quasi-static Form of metric

introducing the coordinate change

$$u(z,\tau) \equiv \frac{2v^2}{1+v^4}$$

New time

$$t/t_0 \equiv \frac{3}{2} (\tau/\tau_0)^{\frac{2}{3}} , \qquad \text{yields}$$
$$ds^2 = \frac{\pi^2 T_0^2 R^2}{u} \left[-f(u) dt^2 + \frac{4}{9} t^2 dy^2 + \frac{3}{2} \frac{t_0}{t} dx_{\perp}^2 \right] + \frac{R^2}{4f(u)} \frac{du^2}{u^2}$$

In this transformed metric

horizon is no longer moving away in the fifth direction expanding in

the y direction and contracting in the transverse direction

Langevin eq.

$$D = \frac{T}{M\eta_D} = \frac{2T^2}{\kappa} \,.$$

Noise v.s Force

$$\int dt \, \int dt' \, \langle \xi_i(t)\xi_j(t')\rangle = (\text{time}) \times \kappa \,\delta_{ij} = \int dt \, \int dt' \, \langle \mathcal{F}_i(t)\mathcal{F}_j(t')\rangle$$

$$\kappa = \int dt \left\langle \mathcal{F}_y(t) \mathcal{F}_y(0) \right\rangle \,.$$

Equation of Motion

; Nambu-Goto action is

$$S = \frac{T_0 \sqrt{\lambda}}{8} \int_0^\infty dt \int_{-\infty}^\infty du \left(\frac{3t_0}{2t}\right) \left[\frac{(\partial_t \xi)^2}{u^{\frac{2}{3}} f(u)} - \frac{4f(u)\pi^2 T_0^2}{u^{\frac{1}{2}}} (\partial_u \xi)^2\right]$$

except for an overall factor of $\left(\frac{3t_0}{2t}\right)$

the same as the one in the static black hole metric

$$\partial_t^2 \xi - \frac{1}{t} \partial_t \xi + 2\pi^4 T_0^4 f(u)(1 + 3u^2) \partial_u \xi - 4\pi^4 T_0^4 u f(u)^2 \partial_u^2 \xi = 0$$

Reduced Boundary action

$$S_{\text{boundary}} = \frac{3\pi^2 \sqrt{\lambda} T_0^3 t_0}{4} \int dt \, \frac{f(u)}{\sqrt{ut}} \xi(t, u) \partial_u \xi(t, u) |_{u=0}^{u=1}$$
$$= \int \frac{d\omega}{2\pi} \, \tilde{\xi}_0(-\omega) \left[\left(\frac{3\pi^2 \sqrt{\lambda} T_0^3 t_0}{4} \right) \frac{f(u)}{\sqrt{u}} \Psi_{-\omega}(u) \partial_u \Psi_{\omega}(u) \right]_{u=0}^{u=1} \tilde{\xi}_0(\omega)$$

Eq.of M for
$$\Psi_{\omega}(u)$$

$$\partial_u^2 \Psi_\omega(u) - \frac{3u^2 + 1}{2uf(u)} \partial_u \Psi_\omega(u) + \frac{\mathfrak{w}^2}{4uf(u)^2} \Psi_\omega(u) = 0$$

where $\mathfrak{w} \equiv \frac{\omega}{\pi T_0}$.

Near the horizon the solution behaves as

$$\Psi_{\omega} \sim (1-u)^{\pm i\mathfrak{w}/4} ,$$

minus choice corresponds to the infalling boundary condition.

Retarded Green Function And Boundary condition

$$G_R(\omega) \equiv \left[-\frac{3\pi^2 \sqrt{\lambda} T_0^3 t_0}{2} \right] \left[\frac{f(u)}{\sqrt{u}} \Psi_{-\omega}(u) \partial_u \Psi_{\omega}(u) \right]_{u=0}$$

Need Infalling boundary condition for $\Psi_{\omega}(u)$

C. P. Herzog and D. T. Son,

Scheme of Calculation

AdS/CFT correspondence $\langle \exp(i \int F(t)\xi(t)) \rangle = \exp(iS_{cl}[\xi]).$

Wightman function $G(t_1, t_2) \equiv \frac{1}{2} \langle F(t_1)F(t_2) + F(t_2)F(t_1) \rangle$

$$G(\omega) = -\mathrm{coth}\frac{\omega}{2T_0}\mathrm{Im}G_R(\omega)$$

C. P. Herzog and D. T. Son, hep-th/0212072

The key problem

For the retarded Green's function,

we need the wave function near zero satisfying

infalling boundary condition at the horizon.

Stratege of work

First we find two independent solutions near the horizon

$$\begin{split} \Psi^{H}_{\omega,in} &\equiv (1-u)^{-i\mathfrak{w}/4} \left[1 - (1-u) \left(\frac{i\mathfrak{w}^2}{8i + 4\mathfrak{w}} \right) \right] + \cdots , \\ \Psi^{H}_{\omega,out} &\equiv (\Psi^{H}_{\omega,i})^*. \end{split}$$

 $\Psi^{H}_{\omega,in}$ is the infalling solution

these solutions are valid for all \mathfrak{w} .

Near the boundary $(u \sim 0)$

$$\Psi^{B}_{\omega,0} \equiv u^{3/2} - \frac{\mathfrak{w}^{2}}{10} u^{5/2} + \left(\frac{3}{7} + \frac{\mathfrak{w}^{4}}{280}\right) u^{7/2} + \cdots ,$$

$$\Psi^{B}_{\omega,1} \equiv 1 + \frac{\mathfrak{w}^{2}}{2} u - \frac{\mathfrak{w}^{4}}{8} u^{2} + \left(\frac{\mathfrak{w}^{2}}{9} + \frac{\mathfrak{w}^{6}}{144}\right) u^{3} + \cdots$$

take the near-horizon wave-function $\Psi^{H}_{\omega,in}(u)$ as the initial data numerically integrate it to the boundary

solution is expressed as a linear sum of basis $\Psi^B_{\omega,0}$ and $\Psi^B_{\omega,1}$

$$\Psi^{H}_{\omega,in}(u) \xrightarrow{(14)} \mathcal{A}\Psi^{B}_{\omega,1}(u) + \mathcal{B}\Psi^{B}_{\omega,0}(u)$$

 ${\mathcal A}$ and ${\mathcal B}$ are complex numbers determined numerically.

Normalization of wave function

we have to normalize Ψ such that it goes to 1

normalized wave function with correct boundary conditions is $\Psi_{\omega} = \mathcal{A}^{-1} \Psi^{H}_{\omega,in}(u)$ $\Psi_{\omega}(u) = \Psi^{B}_{\omega,1}(u) + \frac{\mathcal{B}}{\mathcal{A}} \Psi^{B}_{\omega,0}(u),$

which readily yields $\operatorname{Im}\left[\frac{f(u)}{\sqrt{u}}\Psi_{-\omega}(u)\partial_{u}\Psi_{\omega}(u)\right]_{u=0} = \frac{3}{2}\operatorname{Im}\tilde{\mathcal{B}}$

with $\tilde{\mathcal{B}} = \frac{\mathcal{B}}{\mathcal{A}}$.

Now the Wightman function $G(\omega)$ is given by

$$G(\omega) = \left[\frac{3\pi\sqrt{\lambda}T_0^3\tau_0}{2}\right] \left(\pi \coth\frac{\omega}{2T_0}\right) \left(\frac{3}{2}\operatorname{Im}\tilde{\mathcal{B}}(\omega)\right)$$

while \mathcal{A} is easily accessible : \mathcal{B} is not.

taking the imaginary part of $\Psi_{\omega}(u) = \Psi^B_{\omega,1}(u) + \frac{\mathcal{B}}{\mathcal{A}}\Psi^B_{\omega,0}(u),$ $\operatorname{Im}\tilde{\mathcal{B}} = \left[\frac{\mathcal{A}^{-1}\Psi^H_{\omega,in}(u)}{\Psi^B_{\omega,0}(u)}\right]$

then we evaluate it at any point, say, u = 1.

$$\Psi^B_{\omega,0}(u) \quad u = 1$$

we need to numerically integrate from the boundary

Therefore we get the numerical recipe:

$$\mathrm{Im}\tilde{\mathcal{B}} = \mathrm{Im}\left[\frac{\Psi^{H}_{\omega,in}(u=1-\epsilon)}{\Psi^{H}_{\omega,in}(u\xrightarrow{(14)}{0})\cdot\Psi^{B}_{\omega,0}(u\xrightarrow{(14)}{1})}\right]$$

Result

Figure 1: Force-Force decorrelator: (a) $\widetilde{G}(\mathfrak{w}) = \frac{G(\mathfrak{w}) - \frac{\pi}{2}|\mathfrak{w}^3|}{\left[\frac{3\pi\sqrt{\lambda}T_0^3\tau_0}{2}\right]}$ (b) $\widetilde{G}(\mathfrak{T},s) = \frac{G(\mathfrak{T},s)}{\left[\frac{3\pi^2\sqrt{\lambda}T_0^4\tau_0}{2}\right]}$ [The dashed red line: discrete Fourier transform of (a). The dotted blue line: the divergent contribution alone. The solid line: the total result.]

Decorrelation time

decorrelation time follows readily from the dashed red curve

$$t_F \sim \frac{2}{\pi T_0}$$

This time compares favorably with lowest quasi-normal mode \mathfrak{w}_1^{qn} associated to string fluctuations

$$\mathfrak{w}_1^{qn} \approx 2.69 - 2.29i.$$

This yields a decorrelation time of order $0.44/T_0$ which is comparable to our $0.64/T_0$

force-force decorrelation time, denoted by δt , is

$$\delta t \sim \frac{1}{T_0} \; .$$

Using the relation
$$t/t_0 \equiv \frac{3}{2} (\tau/\tau_0)^{\frac{2}{3}}$$

$$t_F = \delta t = (\tau_0/\tau)^{1/3} \delta \tau$$

$$\delta \tau \sim \frac{(\tau/\tau_0)^{1/3}}{T_0} \equiv \frac{1}{T(\tau)},$$

which is the natural time dependent temperature, $T(\tau)$

Momentum correlation and Diffusion constant

 $\langle \Delta p(t)^2 \rangle \equiv \langle (p(t + \Delta t) - p(t))^2 \rangle$

$$\begin{split} \langle \Delta p(t)^2 \rangle &= \int_{t}^{t+\Delta t} \mathrm{d}t_1 \int_{t}^{t+\Delta t} \mathrm{d}t_2 \langle F(t_1)F(t_2) \rangle \approx \int_{t}^{t+\Delta t} \mathrm{d}\mathfrak{T} \int_{-\infty}^{\infty} \mathrm{d}s G(\mathfrak{T},s) \\ &\approx \frac{3}{2} \pi \sqrt{\lambda} T_0^3 t_0 \frac{\Delta t}{t} \\ \langle \Delta p(\tau)^2 \rangle &= \pi \sqrt{\lambda} T_0^3 t_0 \frac{\Delta \tau}{\tau} := \kappa(\tau) \Delta \tau \\ \hline \kappa(\tau) &= \frac{\pi \sqrt{\lambda} T_0^3}{\tau/\tau_0} = \pi \sqrt{\lambda} T^3(\tau) \end{split}$$

 $\kappa(\tau)$ is the time-dependent momentum diffusion constant.

equilibration in the diffusion regime.

$$\frac{\mathrm{d}p(\tau)}{\mathrm{d}\tau} = -\eta_D(\tau)p(\tau) + F(\tau) , \quad \langle F(\tau) \rangle = 0$$
$$\eta(\tau) = \frac{1}{2MT(\tau)} \frac{\mathrm{d}}{\mathrm{d}\tau} \int_0^{\tau} \mathrm{d}\tau_1 \int_0^{\tau} \mathrm{d}\tau_2 \langle F(\tau_1)F(\tau_2) \rangle = \frac{\kappa(\tau)}{2MT(\tau)}$$
$$\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} \langle x^2 \rangle + \eta(\tau) \frac{\mathrm{d}}{\mathrm{d}\tau} \langle x^2 \rangle - 2 \langle v(\tau)^2 \rangle = 0$$

$$\frac{d\tau}{d\tau} \frac{d\tau}{d\tau} = \frac{\partial T}{\partial \tau} \frac{\partial T}{\partial \tau} = \frac{\partial T}{\partial \tau} \frac{\partial T}{\partial \tau} = \frac{\partial T}{\partial \tau} = 0,$$

$$\begin{aligned} \text{Diffusion Rate} \\ D(\tau) &\equiv \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}\tau} \langle x^2 \rangle \\ \dot{D}(\tau) + \eta(\tau) D(\tau) - \langle v(\tau)^2 \rangle = 0 \\ \text{we need two inputs: } \eta(\tau) \text{ and } \langle v(\tau)^2 \rangle. \\ \eta(\tau) &= \frac{\pi \sqrt{\lambda} T(\tau)^2}{2M} \qquad < v(\tau)^2 >= \frac{T(\tau)}{M} \end{aligned}$$

$$\dot{D}(\tau) + a \ \tau^{-2/3} D(\tau) - b \ \tau^{-1/3} = 0,$$

with $a = \eta_0 \tau_0^{2/3}$ and $b = T_0 \tau_0^{1/3} / M$

Solution

$$D(\tau) = \frac{b}{a}\tau^{1/3} + D(0)e^{-3a\tau^{1/3}}$$

it shows how the diffusion rate for a quark changes in an expanding

At short times it is D(0)at large times $D(\tau) = \frac{2}{\pi\sqrt{\lambda}T(\tau)}$

with an adiabatically changing temperature.

Cross over is Exponential

Conclusion

- We considerred Diffusion of heavy quark in a expanding medium
- In comoving frame time dependent diffusion problem is captured in the retarded Green function, which is calculated by AdS/CFT
- Equilibrium is reached exponentially fast. With time scale $\tau \sim 1/\eta_0^3$

 $\tau/\tau_0 = (1/3\eta_0\tau_0)^3.$ At RHIC $\tau_0 \approx 1$ fm so that $\tau/\tau_0 \approx 1/\eta_0^3$

Hankel transform

$$\xi(t,u) \equiv \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \sqrt{\frac{i\pi\omega}{2}} t H_1^{(2)}(\omega t) \Psi_{\omega}(u) \tilde{\xi}_0(\omega)$$

 $\Psi_{\omega}(u)$ is normalized such that $\Psi_{\omega}(0) = 1$. $tH_1^{(2)}(\omega t)$ assume the following 'completeness relation'

$$-\frac{1}{4} \int_{-\infty}^{\infty} dt \ t H_1^{(2)}(\omega t) H_1^{(2)}(-\omega' t) \simeq \frac{1}{\omega} \delta(\omega - \omega').$$
$$\int_0^{\infty} dt \ t J_\nu(\omega t) J_\nu(\omega' t) = \frac{1}{\omega} \delta(\omega - \omega')$$

Hydrodynamic Limit $\omega \rightarrow 0$

$$\Psi_{\omega} = (1-u)^{-i\mathfrak{w}/4} \left[1 + \frac{i\mathfrak{w}}{2} \left(-\tan^{-1}\sqrt{u} + \ln(1+\sqrt{u}) \right) \right] + \mathcal{O}(\mathfrak{w}^2)$$

$$\lim_{\omega \to 0} \left(\pi \coth \frac{\pi \mathfrak{w}}{2} \right) \operatorname{Im} \left[\frac{f(u)}{\sqrt{u}} \Psi_{-\omega}(u) \partial_u \Psi_{\omega}(u) \right]_{u=0} \to 1$$

WKB Limit $\omega \to \infty$.

$$\lim_{\omega \to 0} \left(\pi \coth \frac{\pi \mathfrak{w}}{2} \right) \operatorname{Im} \left[\frac{f(u)}{\sqrt{u}} \Psi_{-\omega}(u) \partial_u \Psi_{\omega}(u) \right]_{u=0} \to \frac{\pi |\mathfrak{w}|^3}{2}$$

For general ω , we have to resort to numerical methods.