## Heavy flavor production at RHIC

Yonsei Univ. Y. Kwon

### Contents

#### Introduction

- Current measurements
  - Total cross sections by PHENIX and STAR
  - Related differential cross sections
  - R<sub>AA</sub>, flow, and further results
  - Charm/Bottom ratio
- How do we obtain the result?
  - Direct reconstruction
  - Non-photonic e & prompt μ
- Results at higher energy
- A question?

## Introduction : heavy quarks as a probe



# Introduction : (open) heavy flavor measurement

**Direct:** reconstruction of all decay products

 $D^0 \rightarrow K^- \pi^+, \overline{D}^0 \rightarrow K^+ \pi^-,$  $B.R. = 3.80 \pm 0.07\%$ 

Indirect: charm and beauty via electrons

 $c \rightarrow e^+$  + anything (B.R.: 9.6%)  $b \rightarrow e^+$  + anything (B.R.: 10.9%) issue of photonic background charm (and beauty) via muons  $c \rightarrow \mu^+$  + anything (B.R.: 9.5%)



#### Total cross sections, PHENIX vs STAR



Binary scaling STAR results ~ 2 times larger than PHENIX

# Forward prompt µ<sup>-</sup> production (PHENIX)



PPG057 : PRD76, 092992(2007)

#### Leptons from Heavy flavor, PHENIX



#### PRL, 98, 172301 (2007)



Systematically higher than FONLL calculation e yield shows binary scaling, high p<sub>T</sub> suppression in central Au+Au

#### Leptons from heavy flavor, STAR



• Combined fit of  $\mu$ , D<sup>0</sup>, low  $p_T$  e

• Low p<sub>T</sub> muon constrains charm cross-section

#### Heavy quarks in p+p from e<sup>+</sup>e<sup>-</sup> at PHENIX







# Nuclear modification factor

$$R_{AA}(p_t) = \frac{1}{N_{coll}} \frac{\frac{dN_{AA}}{dp_t}}{\frac{dN_{pp}}{dp_t}}$$

# Energy Loss?



### Elliptic flow $v_2 - NPE$ from HF decays



#### PHENIX RUN4 : PRL, 98, 172301 (2007)

## How do we obtain the result?

#### Direct D-meson reconstruction (STAR)



No displaced vertex used

#### Non-photonic electrons





Dominant background :  $\pi^0$  Dalitz decay,  $\gamma$  conversion

#### u-measurement, sources



- 1 : Hadrons, interacting and absorbed (98%),
- 2 : Charged  $\mathbb{Z} \pi/K$ 's, "decaying into  $\mu$ " before absorber ( $\leq 1\%$ ),
- 3 : Hadrons, penetrating and interacting ("stopped")
- 4 : Hadrons, "punch-through",
- <u>5 : Prompt µ, "desired signal"</u>

#### µ-measurement, Signal composition



Generator (Decay  $\mu$  + punch-through) 1. Light hadron measurement by PHENIX central arm (y = 0) 2. Gaussian extrapolation in rapidity to muon arm acceptance ( $\sigma = 2.5$ ) 3. Simplified spectrometer geometry.

# Forward prompt µ<sup>-</sup> production (PHENIX)



PPG057 : PRD76, 092992(2007)

## Leptons from heavy flavor, PHENIX

#### PRL, 98, 172301 (2007)



Systematically higher than FONLL calculation

Integral e yield follows binary scaling, strong high  $p_T$  suppression at central AuAu collisions

## Leptons from heavy flavor, STAR



- Combined fit of  $\mu$ , D<sup>0</sup>, low  $p_T e$
- $\bullet$  Low  $p_{T}$  muon constrains charm cross-section

## STAR high p<sub>T</sub> non-photonic electrons



#### Bottom contribution to non-photonic e



Data consistent with FONLL.

## Results at higher energy

### Differential charm cross section



#### Differential bottom cross section



## A question?

- STAR high pT electrons?
- If it's problem, normalization (efficiency)?
  - Detector thickness must be varying a lot!