

쿼크물질 연구소 (2008 SRC 안)

연구주제 가벼운 벡터중간자를 활용한 쿼크물질 카이랄 대칭성확인 무거운 쿼크계를 활용한 쿼크물질의 탈구속 현상확인 중이온 충돌 실험의 특이현상을 통한 쿼크물질 확인

HIM 08-07 - SHLee

한국아이디어 1

중이온 충돌 실험의 특이현상을 통한 쿼크물질 확인

Recent Highlights in Hadron Physics

Babar: D_{SJ}(2317) 0+

Puzzle in Constituent Quark Model(2400)

- 1. DK threshold effect
- 2. Chiral partner of $(0^{-} 1^{-})$
- 3. Tetraquark

HIM 08-07 - SHLee

Previous Work on Multiquark Configuration

Common feature : attractive scalar Diquark $\langle \varepsilon^{abc}u_a C\gamma^5 d_b \rangle$

Important diquark	qq	qq
Color	Antisym	Antisym
Flavor	Antisym (I=0)	Sym (I=1)
Spin	Antisym (S=0)	Sym (S=1)
Total force	attractive	repulsive

- 1. Special feature of QCD
- 2. Long history in Baryon spectrum : example $\Lambda \Sigma$,,,,
- 3. Responsible for Exotics (Multiquark configuration)
- 4. Theoretically: one gluon exchange, Instanton
- 5. Color superconductivity: 2SC,CFL, BEC
- 6. sQGP: Shuryak, Zahed (04)

Attraction in quark-antiquark vs. scalar diquark

$-\frac{4\alpha}{1}$	One aluan exchance	$-\frac{1}{4\alpha}\frac{4\alpha}{1}$
3 r	One gluon exchange	$\overline{2}$ $\overline{3}$ r

- $\sigma \times r$
- Lattice calculation (Nakamura, Saito 05)

$$\frac{1}{2}\sigma \times r$$

 $\frac{C}{m_i m_k} \sum S_i \cdot S_k$

Phenomenological fit of color spin interaction to hadron spectrum $\frac{1}{3}\frac{C}{m_i m_k} \sum S_i \cdot S_k$

Baryon Mass difference

$$\sum \frac{C_B}{m_i m_k} [s_i \cdot s_k]$$

Mass Diff.	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c} - M_{\Lambda_c}$	$M_{\Sigma_b} - M_{\Lambda_b}$
Formula	$\frac{3C_B}{2m_u^2}$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_s}\right)$	$\frac{C_B}{m_u^2} (1 - \frac{m_u}{m_c})$	$\frac{C_B}{m_u^2} \big(1 - \frac{m_u}{m_b}\big)$
Fit	$290~{\rm MeV}$	$77 { m MeV}$	$154 { m MeV}$	$180 { m MeV}$
Experiment	$290~{\rm MeV}$	$75 { m MeV}$	$170 { m MeV}$	$192 { m ~MeV}$

$$m_u = m_d = 300 \text{ MeV}$$

 $m_s = 500 \text{ MeV}$
 $m_c = 1500 \text{ MeV}$
 $m_b = 4700 \text{ MeV}$

Example Mass = Kinetic +..+
$$\frac{C_B}{m_u m_d} [s_u \cdot s_d] + \frac{C_B}{m_u m_s} [(s_u + s_d) \cdot s_s]$$

 Λ_c Mass = Kinetic +..- $\frac{3}{4} \frac{C_B}{m_u m_d}$
 Σ_c Mass = Kinetic +..+ $\frac{1}{4} \frac{C_B}{m_u m_d} - \frac{C_B}{m_u m_c}$

Baryon Mass difference

					\neg \rightarrow \neg $S_{i} \cdot S_{i}$
Mass Diff.	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c} - M_{\Lambda_c}$	$M_{\Sigma_b} - M_{\Lambda_b}$	$m_i m_k m_k^{-1}$
Formula	$\frac{3C_B}{2m_u^2}$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_s}\right)$	$\frac{C_B}{m_u^2} (1 - \frac{m_u}{m_c})$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_b}\right)$	
Fit	$290~{\rm MeV}$	$77 { m MeV}$	$154 { m MeV}$	$180 { m MeV}$	
Experiment	$290 { m MeV}$	$75 { m MeV}$	$170 { m MeV}$	$192 { m ~MeV}$	

$$m_u = m_d = 300 \text{ MeV}, \ m_s = 500 \text{ MeV}, \ m_c = 1500 \text{ MeV}, \ m_b = 4700 \text{ MeV}$$

Meson Mass difference

Mass Diff.	$M_{\rho} - M_{\pi}$	$M_{K^*} - M_K$	$M_{D^*} - M_D$	$M_{B^*} - M_B$
Formula	$\frac{C_M}{m_u^2}$	$\frac{C_M}{m_u m_s}$	$\frac{C_M}{m_u m_c}$	$\frac{C_M}{m_u m_b}$
Fit	$635 { m ~MeV}$	$381 { m MeV}$	$127 { m MeV}$	$41 { m MeV}$
Experiment	$635 { m MeV}$	$397 { m MeV}$	$137 { m MeV}$	$46 { m MeV}$

$$\sum \frac{C_M}{m_i m_k} [s_i \cdot s_k]$$

 $\nabla C_{p} \Gamma$

Works very well with $3 \times C_B = C_M = 635 m_u^2$

Why heavy pentaquarks $\Theta_{cs}(udusc)$

For a Pentaguark

For a charmed Pentaquark

$$-232 \text{ MeV} = -\frac{3C_B}{4m_u^2} -\frac{3C_B}{4m_u m_s} = -232 \text{ MeV}$$

a Nucleon and a Kaon
$$\mathbf{I} = -232 \text{ MeV}$$

a Nucleon and a Kaon
$$\mathbf{I} = -232 \text{ MeV}$$

For a Nucleon and a D-meson
$$\mathbf{I} = -232 \text{ MeV}$$

$$\mathbf{I} = -232 \text{ MeV}$$

$$\mathbf{I} = -232 \text{ MeV}$$

For

Possible diquarks in sQGP

Scalar diquark Mass = Kinetic +.. $-\frac{3}{4}\frac{C_B}{m_u m_d}$ \rightarrow -145 MeV Binding

sQGP: Shuryak, Zahed (04) argued that

scalar diquarks might exist in sQGP

Additional Production of multiquark states from Diquarks in sQGP

Additional production of $T_{cc}(udcc)$ through 2-body coalescence

Additional production of Λ_c (udc) through 2-body coalescence, and Λ_c /D ratio

 Λ_c /D ratio in coalescence model (same in RHIC and LHC)

Parameters : $T_c=170 \text{ MeV}, m_u=m_d=300 \text{ MeV}, m_{ud}=450 \text{ MeV}$ to 600 MeV

Λ_{c}/D ratio in other processes

Summary of Korean idea 1

- 1. Diquark are unique in QCD
- 2. Mutltiquark states will exits in Heavy sector, due to diquark structure T_{cc} (ud $c\bar{c}$) Θ_{cs} (udus \bar{c})...

LHC can be a very useful heavy exotic factory

 \Box If found, it will be the first exotic ever,

 \Box will tell us about QCD, q-q interaction and dense matter

- \Box great step forward in QCD
- 3. If diquarks exists near Tc, additional production of T_{cc} and Θ_{cs}. Ac/D enhancement can be a signature of sQGP
 □ LHC plans to measure Ac and D → Korean idea 1 (I.K.Yoo, SHLee, PRL08)
- 4. H dibaryon could be found at LHC?

한국아이디어 2

무거운 쿼크계를 활용한 탈구속 현상 확인

J/ψ in Quark Gluon Plasma

17

• Datta et al. (04)

• Datta Karsch , ..(06) Y χ_b

• Y. Kim, J. Lee, SHL 07 (ADS/QCD)

J/ψ in Quark Gluon Plasma

How can we treat heavy quark system in QCD ?

Properties of QGP from lattice

G^2 , E^2 and B^2 across T_c -- (quenched case)

Lattice result for purge gauge (Boyd et al 96)

Using energy momentum tensor $p \text{ and } \varepsilon \rightarrow \text{local operators}$ $T^{\alpha\beta} = -G^{\alpha\mu}G^{\beta\mu} + g^{\alpha\beta}\frac{\beta(g)}{2g}G^2$ $\text{operators} \rightarrow \langle T^{\alpha\beta} \rangle = -\left(u^{\alpha}u^{\beta} - \frac{1}{4}g^{\alpha\beta}\right)G_2 + \frac{1}{4}g^{\alpha\beta}G_0$ $\text{Lattice} \rightarrow \langle T^{\alpha\beta} \rangle = \left(u^{\alpha}u^{\beta} - \frac{1}{4}g^{\alpha\beta}\right)(\varepsilon + p) + \frac{1}{4}g^{\alpha\beta}(\varepsilon - 3p)$

Extraction from lattice: Morita, Lee (08)

E^2 and B^2 across T_c -- (relation to potentials ?)

Manousakis, Polonyi, PRL 58 (87) 847 "Nonperturbative length scale in high T QCD"

Shifman NPB73 (80)

 $W(S-T) = 1 - \langle \alpha / \pi E^2 \rangle (ST)^2 + \dots$ $W(S-S) = 1 - \langle \alpha / \pi B^2 \rangle (SS)^2 + \dots$

	W(S-T)	$\langle \alpha / \pi E^2 \rangle$	W(S-S)	〈 α/πB² 〉
T <tc< td=""><td>Area</td><td>change</td><td>Area</td><td>no change</td></tc<>	Area	change	Area	no change
T>Tc	Perimeter		Area	

If $\langle E^2 \rangle$ suddenly increases across T_c, what will happen to J/ ψ immersed in it ?

Hydrogen Atom in an external E field

Stark effect in hydrogen

QCD 2nd order Stark Effect (Peskin, Luke, Manohar, SHL, CMKo)

A non-perturbative method ?

QCD sum rules for Heavy quark system T=0

$$M_{n} = \left(\frac{d}{dQ^{2}}\right)^{n} < J(Q), J(0) > = \int ds \frac{\rho(s)}{(s+Q^{2})^{n}}$$

Phenomenological side

 \rightarrow predicted M_{nc}<M_{J/ ψ} before experiment

QCD sum rules for Heavy quark system T near Tc

Phenomenological side

$$M_n = a_n \left(1 + \alpha + \frac{(n+4)!}{n!} \frac{\Delta \langle \mathbf{G}^2 \rangle + c \langle \mathbf{G}_2 \rangle}{\left(4m_c^2\right)^2} \dots \right)$$

Constraint for J/ w Mass and Width above Tc

Due to the sudden change in gluon condensates, there will be a critical behavior of J/ψ near T_c , $|\Delta m| + \Delta \Gamma = 150 \text{ MeV}$ from Tc to Tc + 10 MeV

Model calculation is needed to get the changes separately,
 → Use QCD Stark Effect ?

Lattice vs. QCD sum rule results

2. χ_b states

Summary of Korean idea 2

- 'Order parameter' of QCD Phase transition: Critical behavior of heavy quark system near T_c, mass shift and width broadening
- 2. A precursor phenomena takes place in nuclear matter
 → Mass shift could be observed through anti proton project at GSI
- 3. Consequences in HIC?. Non trivial effects expected to χ_c, ψ', Y, Y'...
 → direct measurement of mass shift
 - \rightarrow confirmation through sudden increase in $\chi_c/J/\psi$ or $\psi'/J/\psi$ ratio

본 실패한 SRC 의 성공적 성과

- 1. 그 동안 이룩한 HIM 의 결집된 노력
- 2. 앞으로 많이 나올 Korean Idea 의 시작
- 3. 희망을 줌

→ 한국아이디어, leading role, quark matter 유치, 노벨상