

Dense Matter in Astrophysics

Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts

Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)

Contents

- Introduction to Gravitational Wave Radiation
- Neutron Star Binary System
 - (astrophysical part) In-Spiral & Mass Transfer(RLOF)
 - (dense matter part) Neutron Star Structures
- Numerical Result
 - Mass transfer time scales
 - Polarization amplitude of GWR in case by case
 - Comparison between normal NS and Quark star
- Conclusion & Outlook

What is the GWR?

General Relativity: Light travels along the curved space taking the shortest path between two points. Therefore, light is deflected toward a massive object! The stronger the local gravity is, the greater the light path is bent.

Ripples in the Fabric of the Space-Time

Gravitational radiation

Einstein Field Equation

$$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R^{\alpha}_{\alpha} = -\frac{8\pi G}{c^4} T^{\mu\nu} \qquad g^{\mu\nu} = \eta^{\mu\nu} + f^{\mu\nu}$$

Linearized field equation ∂_{μ}

$$\partial_{\mu}h^{\mu\nu}=0$$

$$\partial^{\lambda}\partial_{\lambda}(f^{\mu\nu} - \frac{1}{2}\eta^{\mu\nu}f^{\alpha}_{\alpha}) = \partial^{\lambda}\partial_{\lambda}h^{\mu\nu} = -\kappa T^{\mu\nu} \qquad \text{Wave Equation}$$

$$h^{\mu\nu} = \frac{4\pi}{c^4} \int \frac{T^{\mu\nu}(t - |\vec{x} - \vec{x}'| / c, \vec{x}')}{|\vec{x} - \vec{x}'|} d^3 \vec{x}'$$

Gravitational radiation

Polarization amplitude for compact binary system $h_{+}(t) = \frac{4}{r} \frac{G^2 M^2}{ac^4} \frac{q}{(1+q)^2} \cos 2\omega(t-r)$

Angle dependence

Network of Interferometers

Gravitational wave from NS binary

B1913+16 Hulse & Taylor (1975)

 \rightarrow 1993 Nobel Prize

Cumulative shift of periastron time decay due to the effect of Gravitational Wave Radiation

Sources of the GWR

Compact Star binary

Neutron Star-Neutron Star Neutron Star-Black Hole Black Hole-Black Hole

Source of GRB ,too

GRB~10⁵¹erg SN~10⁴⁰erg Sun~10³³erg H Bomb~10²⁰erg Nuclear Power Plant~10¹⁵erg Light Bulb~10⁸erg

Callapsar: Woosley et al.

In-spiral & Mass transfer

Orbit shrinks due to the gravitational radiation

Orbit increases due to the conservation of AM and mass transfer by Roche lobe over flow

Neutron Star structure

TOV equation

Nuclear matter

- 1) The properties of nuclear matter
- 2) N-N interaction
- 3) RMF models

 - Baryon octetKaon condensation

Quark matter

- MIT bag model

Calculated By C.Y. Ryu @ Sungkyunkwan Univ.

Neutron Star structure

Mass-Radius relation of Neutron Star

Calculated By C.Y. Ryu @ Sungkyunkwan Univ.

Mass transfer time scale

Mass transfer time scale

BH spin up

Normal NS vs. Quark Star (kaon vs. quark)

Polarization amplitude(M_{\odot}) (At

(After mass transfer occur)

Normal NS vs. Quark Star (kaon vs. quark)

Frequency

Quark Star

Higher than Normal NS

Nearly constant after mass transfer

Conclusions & Outlook

- Possibility of probing NS EOS in GW & GRBs. (At least, may be able to exclude some EOS)
- Need to consider the spin & eccentricities of NS-BH binaries
- And something more??