Finite Density QCD with Infinite Coupling Constant Limit

S. Kim (Sejong U.) Hyeong-Gyu Kim (Sejong U.)

work under progress

Plan of Talk

- 0. Motivation
- 1. QCD with infinite coupling constant
- 2. MDP Algorithm
- 3. Discussion

0. Motivation

• Heavy Ion Collision

• Finte T/ μ QCD phase diagram

PHYSICS & HIGH TECHNOL

• unlike finite T domain of QCD phase diagram, it is difficult to study finite μ domain systematically

- \bullet Euclidean lattice QCD action becomes complex \rightarrow "sign problem"
- Monte Carlo simulation of lattice QCD action is unstable at best
- \bullet actually, our knowledge about finite μ domain of QCD phase diagram is NOT on firm ground
- \rightarrow model study

1. QCD with infinite coupling constant

QCD lagrangian

$$\mathcal{L} = \bar{\psi}(\gamma_{\mu}D_{\mu} + m)\psi - \frac{1}{4}F^{a}_{\mu\nu}F^{a}_{\mu\nu}$$
(1)

•
$$D_{\mu} = \partial_{\mu} + igA^a_{\mu}T^a$$

•
$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + igf^{abc}A^b_\mu A^c_\nu$$

• usually interested in weak coupling limit $g \rightarrow 0$ limit gives a free theory

- strong coupling limit: $g \to \infty$
- rescaling $\tilde{A}^a_\mu = g A^a_\mu$
- $D_{\mu} = \partial_{\mu} + i \tilde{A}^a_{\mu} T^a$
- $F^a_{\mu\nu} = \frac{1}{g} [\partial_\mu \tilde{A}^a_\nu \partial_\nu \tilde{A}^a_\mu + i f^{abc} \tilde{A}^b_\mu \tilde{A}^c_\nu]$
- QCD lagrangian in strong coupling limit (drop tilde)

$$\mathcal{L} = \bar{\psi}(\gamma_{\mu}D_{\mu} + m)\psi - \frac{1}{4g^2}F^a_{\mu\nu}F^a_{\mu\nu}$$

- usually interested in strong coupling limit
 - $g \rightarrow \infty$ limit gives QCD string ground state

```
(K.G. Wilson, Phys.Rev.D10 (1974) 2445)
```

(2)

- gauge kinetic term, F^2 , drops in this limit
- gluon field becomes a random field
- only gauge singlet combination survives in the path integral

$$\int dU U_i U_j^{\dagger} = \delta_{ij}$$
$$\int dU U_i U_j U_k = \frac{1}{3} \varepsilon_{ijk}$$

 can do analytic calculations (see e.g., N. Kawamoto and his collaborators' works) Comparison between analytic works and Monte Carlo result

(S.K. and Ph. de Forcrand, Phys. Lett. B645(2007) 339)

2. Monomer-Dimer-Polymer (MDP) Algorithm

- F. Karsch, K.H. Mutter, Nucl. Phys. 313 (1989) 541
- partition function of lattice QCD in strong coupling limit

$$\mathcal{Z} = \int d\bar{\psi} d\psi \int dU e^{S_F} \tag{3}$$

•
$$S_F = \bar{\psi}(D_0\eta_0 + D_i\eta_i + m)\psi$$

$$D_i \psi = \frac{1}{2} \{ U_i(x) \psi(x+i) - U_i^{\dagger}(x-i) \psi(x-i) \}$$
$$D_0 \psi = \frac{1}{2} \{ U_0(x) e^{\mu} \psi(x+0) - U_0^{\dagger}(x-0) e^{-\mu} \psi(x-0) \}$$

• ψ is staggered quark field (i.e., 1-component in spin, 3-component in color grassman field)

• each lattice site can have only $\bar{\psi}_3(x)\bar{\psi}_2(x)\bar{\psi}_1(x)\psi_1(x)\psi_2(x)\psi_3(x)$ combination due to grassmann property of quark field

• With
$$M(x) = \sum_{a=1,2,3} \bar{\psi}_a(x)\psi_a(x)$$
,
 $B(x) = \psi_1(x)\psi_2(x)\psi_3(x)$,
 $\bar{B}(x) = \bar{\psi}_3(x)\bar{\psi}_2(x)\bar{\psi}_1(x)$

 only gauge singlet combination survives in the path integral • with

$$F(x,y) = \int dU e^{\bar{\psi}(x)U(x,y)\psi(y) - \bar{\psi}(y)U^{\dagger}(y,x)\psi(x)}$$

= $1 + \frac{1}{3}M(x)M(y) + \frac{1}{12}\{M(x)M(y)\}^2 + \frac{1}{36}\{M(x)M(y)\}^3$
 $-\eta(x,y)^3\bar{B}(x)B(y) - \eta(y,x)^3\bar{B}(y)B(x)$ (4)

$$\mathcal{Z} = \int d\bar{\psi} d\psi e^{m\sum_x M(x)} \prod_{x,y} F(x,y)$$
(5)

• each lattice site can have $n_M + n_D = 3$ (n_M is the number of monomer, n_D is the number of dimer)

or occupied by baryon loop

• allowed lattice site types

형	0	1	2	3	4	5	6
		ţ	• •	••	Î		
$n_{D_{1}}(x)$	1	2	1	0	0	3	0
$n_{D_2}(x)$	1	0	0	0	1	0	0
$n_{D_3}(x)$	0	0	0	0	0	0	1
w(x)	3	6	3	1	3	6	1

• Metropolis algorithm

• either cut a dimer, which removes a link and add monomer at end sites

 or connect two monomers at the neighboring sites, which removes two monomers and add a link between the two sites

• throw dice to satisfy detailed balance

(R. Aloisio et al, Nucl. Phys. B564(2000) 489)

3. Discussion

• We could reproduce F. Karsch, K.H. Mutter, Nucl. Phys. 313 (1989) 541

• MDP alogrithm has a **PROBLEM** with the chiral limit or with heavy quark mass

• further investigation under way

(S.K. and Ph. de Forcrand, Phys. Lett. B645(2007) 339)