Rotational energy term in the empirical formula for the yrast energies in even-even nuclei

> Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan University

Outline

I. Introduction II. Model and Interpretation III. Results and Discussion IV. Summary

Introduction Yrast levels of even-even nuclei

\Rightarrow Reduced transition probability B(E2; 2+ \rightarrow 0+)

\diamond Energy of 2_1^+

Our Empirical Formula $E_{x} = \alpha A^{-\gamma} + \beta_{p} \exp(-N_{p}\lambda_{p}) + \beta_{n} \exp(-N_{n}\lambda_{n}) \cdots (1)$ (I)
(II)
• mass number : A, valence proton (neutron) number : N_p (N_p)

Ref.[1]: D. Kim, E. Ha, and D. Cha, Nucl. Phys. A 799, 46 (2008)

* Determination of $N_{p}(N_{h})$

	Z	N_p	Z	N_p	
	(N)	(N_n)	(N)	(N_n)	ic.
	28	0	40	10	
	30	2	42	8	
particles	32	4	44	6	ho
	34	6	46	4	
303	36	8	48	2	- les
	38	10	50	0	

es

• Example :
$$E_x = \alpha A^{-\gamma} + \beta_p \exp(-N_p \lambda_p) + \beta_n \exp(-N_p \lambda_n)$$

The physical meaning of the empirical formula ?

II. Model and Interpretation

In the deformed nuclei around doubly mid-shell region

$$E_x^{mid} \approx \alpha A^{-\gamma} \cdots (2)$$

Ref.[2] : G. Jin, D. Cha, and J-H Yoon, J. Korean Phys. Soc. 52, 1164(2008) The rotational energy for the rotational bands such as $J^{\pi} = 2^+, 4^+, 6^+, \cdots$

$$E_{rot}(J^+) = \frac{J(J+1)\hbar^2}{2I}$$
....(3)

J: total angular momentum
I: effective moment of inertia

If a nucleus is a rigid body having the axial symmetry about the intrinsic 3 axis

$$I_{\text{rig}} = \frac{2}{5} M R_0^2 (1 + \frac{\delta}{3}) \cdots (4)$$

- nuclear mass M=uA
 nuclear mean radius R₀=1.2A^{1/3}
- distortion perspector $S_{0} = 1.2A$
- distortion parameter $\delta \approx (R_3 R_\perp)/R_0$

Ref.[3]: A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II

 $\Rightarrow 0.3$ (for $^{174}_{70}$ Yb)

The observed moments of inertia are smaller than the moment of inertia given by Eq (4), μ_{Ig} , μ_{Ig} und the doubly mid-shell

2

$$I = kI_{rig} \cdots (5) \qquad k = 1/2$$

By inserting Eq (5) into Eq (3)

$$E_{rot}(J^+) = \alpha' A^{-\gamma'} \cdots \cdots (6)$$

 $\alpha' = J(J+1) \alpha_0, \quad \gamma' = 5/3 \cong 1.67$ $\alpha_0 = \frac{5 \hbar^2}{4 \,\mathrm{k} \,\mathrm{u} \, 1.2^2 \, (1 + \frac{\delta}{3})}$

We perform the $\chi^2_{analyses}$ i) fixed $\gamma = 1.40$ for $1.34 \sim 1.47(2^+ \sim 10^+) \Leftrightarrow \alpha, \beta_p, \lambda_p, \beta_n$, and λ_n ii) fixed α' and $\gamma' = 5/3 \qquad \Leftrightarrow \beta_p, \lambda_p, \beta_n$, and λ_n

$$R_E(i) = \log \left[E_x^{cal}(i) \right] - \log \left[E_x^{exp}(i) \right] \cdots \cdots (8)$$

$$\chi^{2} = \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} [R_{E}(i)]^{2} \cdots (9)$$

No:Number of total data points in the fitting

III. Results and Discussion

◆ Excitation energies of 2⁺ and 4⁺Measured vs. Calculated

* Excitation energies of $6^+, 8^+, and 10^+$: Measured vs. Calculated

III. Results and Discussion

J_1^{π}	Ŷ	α (MeV)	$\alpha_0 (MeV)$	$\beta_p(MeV)$	$\beta_n(\text{MeV})$	λ_p	λ_n	χ^2	N_0
2^{+}_{1}	1.67	395.76	65.96	0.79	1.09	0.42	0.29	0.157	557
4^{+}_{1}	1.67	1319.20	65.96	1.12	1.54	0.34	0.24	0.094	430
6^{+}_{1}	1.67	2770.32	65.96	1.31	1.46	0.32	0.18	0.086	375
8_{1}^{+}	1.67	4749.12	65.96	1.27	1.34	0.26	0.17	0.060	309
10^{+}_{1}	1.67	7255.60	65.96	1.30	1.46	0.23	0.18	0.040	265
2^{+}_{1}	1.40	89.89	14.98	0.82	1.15	0.41	0.28	0.126	557
4_{1}^{+}	1.40	297.87	14.89	1.20	1.67	0.33	0.23	0.071	430
6^{+}_{1}	1.40	654.71	15.59	1.40	1.64	0.31	0.18	0.069	375
8^{+}_{1}	1.40	1155.90	16.05	1.34	1.50	0.26	0.15	0.053	309
10^{+}_{1}	1.40	1702.79	15.48	1.34	1.64	0.22	0.15	0.034	265
2^{+}_{1}	1.34	68.37	11.40	0.83	1.17	0.42	0.28	0.126	557
4^{+}_{1}	1.38	268.04	13.40	1.21	1.68	0.33	0.23	0.071	430
6^{+}_{1}	1.38	598.17	14.24	1.40	1.64	0.31	0.18	0.069	375
8_{1}^{+}	1.45	1438.59	19.98	1.34	1.50	0.26	0.15	0.053	309
10^{+}_{1}	1.47	2316.85	21.06	1.36	1.65	0.21	0.14	0.034	265

25% (for 2^+_1), 32% (for 4^+_1), 25% (for 6^+_1), 13% (for 8^+_1), and 18% (for 10^+_1)

$\Rightarrow \alpha \text{ and } \alpha_0$ for the three different

$$E_{x} = \alpha A^{-\gamma} + \cdots$$

= $\alpha_{0} J (J + 1) A^{-\gamma} + \cdots$
 $\left\{ \frac{A^{(-1.40)}}{A^{(-1.67)}} \approx 4 \text{ (for } {}^{174}_{70} Yb) \right\}$

γ

First term of the empirical formula for the three different

* Excitation energies of the 2_1^+ states for the first, two exponential, and all term

IV. Summary

- The term of $\alpha A^{-\gamma}$ can be obtained by considering the moment of inertia of a deformed nucleus can interpret well previous analyses.
- It is remarkable that the parameters extracted earlier research agree with those () obtained/from the rotor model and that the previous values of and wided by J(J+1) are almost constant as expected from the rotor model.
- The excitation energies calculated with constant can describe the main essential features of the measured airest excitation energies for all of the natural parity even multipole states in eveneven nuclei.
- The empirical formula can be well separated into the moment of inertia term and the two exponential terms which are thought to be related to the presence of the second second