

Instanton vacuum at finite density

Hyun-Chul Kim

Department of Physics Inha University

S.i.N. and H.-Ch.Kim, *Phys. Rev. D* 77, 090014 (2008) S.i.N., H.Y.Ryu, M.Musakhanov and H.-Ch.Kim, arXiv:0804.0056 [hep-ph] S.i.N. and H.-Ch.Kim, *Phys. Lett. B* 666, 324 (2008)

Introduction

QCD, the underlying theory for the strong interaction.

Difficulties in QCD in the low energy region: Nonperturbative feature

Developing models guided by symmetries

Spontaneous Breakdown of Chiral Symmetry

Chiral bag, NJL, Skyrmion, HLS etc...

But... what is the origin of this interesting phenomena?

Highly nontrivial QCD vacuum

It also effects on QCD phase structure, represented by <qq>, <qq>,...

Investigations on the vacuum itself: Instanton, dyon, caloron, etc.

Instanton

Classical ground state solution of the QCD in Euclidean space QED (solid-state physics): electron & phonon vs. QCD : quark & instanton Minimizing the YM action: Self-dual condition $F^a_{\mu\nu} = \tilde{F}^a_{\mu\nu}$ (Singular gauge) instanton solution

Nonperturbative part of gluons replaced by instantons

(Anti)quarks moving around this effective potential-like ensemble

$$\left[i\partial \!\!\!/ + A_{I\bar{I}} + im_f\right]\Phi_{I\bar{I}} = 0$$

So called, quark zero-mode solution.

Instanton

Quark propagator in the instanton effects

Fourier transform of the zero-mode solution

$$S^{-1}(i\partial) = i\partial \!\!\!/ + im_f + iM_0 F_f^2(i\partial)$$
$$F(k) = 2t \left[I_0(t)K_1(t) - I_1(t)K_0(t) - \frac{1}{t}I_1(t)K_1(t) \right], \quad t = \frac{k\bar{\rho}}{2}$$

Momentum-dependent quark mass via Fourier transformation of Φ

Playing a role of a natural UV regulator in the framework Ex) Non-zero chiral condensate, $\langle qq \rangle \neq 0 \rightarrow SBCS$

Instanton

Merits of the instanton framework

- Preserving all relevant QCD symmetries
- $U(1)_A$ included via nonzero topological susceptibility
- Natural scale parameter: average instanton size & inter-distance
- No adjustable free parameters (at least for light quarks in leading Nc)
- Natural UV regulator: M(k)
- Nonlocal interaction between quarks
- Natural derivations of (almost) NJL and Skyrme mode

But No confinement

What is the instanton distribution? (δ -function)

Instanton fluctuation at zero-point (topological charge density)

M.-C.Chu et al., PRD49, 6039(1994)

S.i.N. and H.Ch.Kim, PRD77, 090014 (2008) Pion Electromagnetic form factor

Pion Electromagnetic (EM) matrix element

$$\langle \mathcal{M}(P_f) | j^{\text{EM}}_{\mu}(0) | \mathcal{M}(P_i) \rangle = (P_i + P_f)_{\mu} F_{\mathcal{M}}(q^2)$$

EM current

$$j^{\rm EM}_{\mu}(x) = \sum_{\rm u,d,s} e_f \psi^{\dagger}_f(x) \gamma_{\mu} \psi_f(x)$$

Normalization conditions corresponding to the Ward-Takahashi identity

$$F_{\pi^+}(0) = F_{K^+}(0) = 1, \quad F_{K^0}(0) = 0$$

EM charge radius

$$\langle r^2 \rangle_{\mathcal{M}} = -6 \left[\frac{\partial F_{\mathcal{M}}(Q^2)}{\partial Q^2} \right]_{Q^2 = 0}$$

Effective chiral action modified by external EM source

$$\mathcal{S}_{\text{eff}}[\mathcal{M}^{\alpha}, V, m] = -\operatorname{Sp}_{c,f,\gamma} \ln\left[i\not D + im + i\sqrt{M(iD)}U^{\gamma_5}\sqrt{M(iD)}\right]$$

Momentum-dependent quark mass and covariant derivative

$$M(iD) = M_0 F^2(iD) \qquad iD_\mu = i\partial_\mu + V_\mu$$

Parameterized instanton form factor, $\Lambda \sim 600 \text{ MeV} \sim 1/\rho$ $F(iD) = \frac{2\Lambda^2}{2\Lambda^2 - D^2}$

M0 via the saddle-point equation

$$\frac{N}{V} = 4N_c \int \frac{d^4k}{(2\pi)^4} \frac{M^2(k)}{k^2 + M^2(k)}$$

Mesonic matrix element

Analytic expression for the pion EM FF via N χ QM

$$F_{\pi,K}(Q^2) = \frac{1}{F_{\pi,K}^2} \sum_{\text{flavor}} \frac{8e_q N_c}{(2p_i \cdot q + m_{\pi,K}^2)} \int_{-\infty}^{\infty} \frac{d^4k}{(2\pi)^4} \sum_{i=a}^{h} \mathcal{F}_i(k,q)$$

$$\begin{split} \mathcal{F}_{\rm a}^{\rm L} &= \frac{\sqrt{M_b M_c} (\bar{M}_c k_{bd} + \bar{M}_b k_{cd})}{2 (k_b^2 + \bar{M}_b^2) (k_c^2 + \bar{M}_c^2)}, \\ \mathcal{F}_{\rm b}^{\rm NL} &= \frac{\sqrt{M_b M_c} (\sqrt{M_c} \hat{M}_{bd} - \sqrt{M_b} \hat{M}_{cd}) (k_{bc} - \bar{M}_b \bar{M}_c)}{(k_b^2 + \bar{M}_b^2) (k_c^2 + \bar{M}_c^2)}, \quad \mathcal{F}_{\rm c}^{\rm NL} = 0, \quad \mathcal{F}_{\rm d}^{\rm NL} = 0, \\ \mathcal{F}_{\rm e}^{\rm L} &= \frac{M_a \sqrt{M_b M_c} (k_{ab} k_{cd} + k_{ac} k_{bd} - k_{bc} k_{ad} + \bar{M}_a \bar{M}_c k_{bd} + \bar{M}_a \bar{M}_b k_{cd} - \bar{M}_b \bar{M}_c k_{ad})}{(k_a^2 + \bar{M}_a^2) (k_b^2 + \bar{M}_b^2) (k_c^2 + \bar{M}_c^2)}, \\ \mathcal{F}_{\rm f}^{\rm NL} &= \frac{M_a \sqrt{M_b M_c} (\sqrt{M_b} \hat{M}_{cd} - \sqrt{M_c} \hat{M}_{bd}) (\bar{M}_c k_{ab} + \bar{M}_b k_{ac} - \bar{M}_a k_{bc} + \bar{M}_a \bar{M}_b \bar{M}_c)}{(k_a^2 + \bar{M}_a^2) (k_b^2 + \bar{M}_b^2) (k_c^2 + \bar{M}_c^2)}, \\ \mathcal{F}_{\rm g}^{\rm NL} &= \frac{\sqrt{M_a M_c} \left[\sqrt{M_b} \hat{M}_{ad} - \sqrt{M_a} \hat{M}_{bd} \right] (k_{ac} + \bar{M}_a \bar{M}_c)}{2 (k_a^2 + \bar{M}_a^2) (k_c^2 + \bar{M}_c^2)}, \\ \mathcal{F}_{\rm h}^{\rm NL} &= \frac{\sqrt{M_a M_b} \left[\sqrt{M_c} \hat{M}_{ad} - \sqrt{M_a} \hat{M}_{cd} \right] (k_{ab} + \bar{M}_a \bar{M}_b)}{2 (k_a^2 + \bar{M}_a^2) (k_b^2 + \bar{M}_b^2)}, \end{split}$$

Pion and kaon EM charge radii

$$\langle r^2 \rangle_{\mathcal{M}} = -6 \left[\frac{\partial F_{\mathcal{M}}(Q^2)}{\partial Q^2} \right]_{Q^2 = 0}$$

	Local	Nonlocal	Total	Exp. [63]
$\langle r^2 \rangle_{\pi^+}^{1/2} [\mathrm{fm}]$	0.594	0.319	0.675	0.672 ± 0.008
$\langle r^2 \rangle_{K+}^{1/2} [\mathrm{fm}]$	0.658	0.318	0.731	0.560 ± 0.031
$\langle r^2 \rangle_{K^0} [\mathrm{fm}^2]$	-0.044	-0.016	-0.060	-0.077 ± 0.010

Good agreement for the pion without explicit ρ -meson d.o.f. A.E.Dorokhov,PRD70,094011 (2004) Considerable disagreements for the kaon FFs? Improper normalization in the model: smaller $F_{\rm K} \sim 108$ MeV S.i.N. and H.Ch.Kim, PRD75, 094011 (2007) Meson-loop corrections necessary?

Instanton at finite quark chemical potential (μ)

Considerable successes in the application of the instanton Extension of the instanton model to a system at finite ρ and TQCD phase structure: nontrivial QCD vacuum: instanton At finite density

- Simple extension to the quark matter: $p
 ightarrow p + i \mu$
- Breakdown of the Lorentz invariance
- At finite temperature (future work!!)
- Instanton at finite temperature: Caloron with Polyakov line
- Very phenomenological approach such as the pNJL
- Using periodic conditions (Matsubara sum)

Focus on the basic QCD properties at finite quark-chemical potential, μ

Instanton at finite μ

Modified Dirac equation with m

$$[i\partial \!\!\!/ - i\mu + A_{I\bar{I}}] \Psi_{I\bar{I}}^{(n)} = \lambda_n \Psi_{I\bar{I}}^{(n)} \qquad \mu_\mu = (0, 0, 0, \mu_q)$$

Low-energy dominated by zero-mode

$$\begin{split} \left[i\partial \!\!\!\partial - i\not\!\!\!\mu + A_{I\bar{I}}\right]\Psi_{I\bar{I}}^{(0)} &= 0 \\ \text{Quark propagator with m} \quad S_{I\bar{I}} &= \frac{1}{i\partial \!\!\!\partial - i\not\!\!\!\mu + A_{I\bar{I}}} \approx S_0 - \frac{\Psi_{I\bar{I}}^{(0)\dagger}\Psi_{I\bar{I}}^{(0)}}{im_q} \end{split}$$

Instantons at finite μ

Quark propagator with the Fourier transformed zero-mode solution,

$$S = \frac{1}{i\partial - i\mu + iM(i\partial,\mu)} \qquad M(p,\mu) = M_0(p+i\mu)^2 \psi^2(p,\mu)$$

$$\begin{split} \psi_4(p,\mu) &= \frac{\bar{\rho}^2}{8|\vec{p}|} \Biggl\{ \left(|\vec{p}| - \mu_q - ip_4 \right) \left[(2p_4 + i\mu_q) F_-^a(p,\mu) + i(|\vec{p}| - \mu_q - ip_4) F_-^b(p,\mu) \right] \\ &+ (|\vec{p}| + \mu_q + ip_4) \left[(2p_4 + i\mu_q) F_+^a(p,\mu) - i(|\vec{p}| + \mu_q + ip_4) F_+^b(p,\mu) \right] \Biggr\}, \\ \vec{\psi}(p,\mu) &= \frac{\bar{\rho}^2 \hat{p}}{8|\vec{p}|} \Biggl\{ (2|\vec{p}| - \mu_q)(|\vec{p}| - \mu_q - ip_4) F_-^a(p,\mu) + (2|\vec{p}| + \mu_q)(|\vec{p}| + \mu_q + ip_4) F_+^a(p,\mu) \\ &+ \left[2(|\vec{p}| - \mu_q)(|\vec{p}| - \mu_q - ip_4) - \frac{1}{|\vec{p}|}(\mu_q + ip_4) \left[p_4^2 + (|\vec{p}| - \mu_q)^2 \right] \right] F_-^b(p,\mu) \\ &+ \left[2(|\vec{p}| + \mu_q)(|\vec{p}| + \mu + ip_4) + \frac{1}{|\vec{p}|}(\mu_q + ip_4) \left[p_4^2 + (|\vec{p}| + \mu_q)^2 \right] \right] F_+^b(p,\mu) \Biggr\}, \end{split}$$

Schwinger-Dyson-Gorkov equation (N_f=2, N_c=3)

$$Z(p) = 1 - G(p)A(p,\mu)M_0,$$

$$G(p) = Z(p)\psi^2(p)M_0,$$

$$F(p) = 2Z(-p)\psi_\mu(p,\mu)\psi^\mu(-p,\mu)\Delta$$

G.W.Carter and D.Diakonov, PRD60,016004 (1999)

$$\overrightarrow{X} = \overrightarrow{S} + \overrightarrow$$

 $\rightarrow G = \rightarrow S_{4} \rightarrow Z$

 $F_{\rm S_0}$

$$\begin{aligned} A(p,\mu) &= (p+i\mu)^2 \psi^2(p,\mu), \\ B(p,\mu) &= (p^2+\mu^2) \psi_\mu(p,\mu) \psi^\mu(-p,\mu) + (p+i\mu)_\mu \psi^\mu(p,\mu) (p-i\mu)_\nu \psi^\nu(-p,\mu) \\ &- (p+i\mu)_\mu \psi^\mu(-p,\mu) (p-i\mu)_\nu \psi^\nu(p,\mu). \end{aligned}$$

$$g(\mu) = \frac{\lambda M_0}{N_c^2 - 1} \int \frac{d^4 p}{(2\pi)^4} \frac{\alpha(p,\mu)}{1 + \alpha(p,\mu)M_0^2}, \quad f(\mu) = \frac{2\lambda\Delta}{N_c^2 - 1} \int \frac{d^4 p}{(2\pi)^4} \frac{\beta(p,\mu)}{1 + 4\beta(p,\mu)\Delta^2},$$

 $\alpha(p,\mu) = A(p,\mu)\psi^{2}(p,\mu), \quad \beta(p,\mu) = B(p,\mu)\psi_{\mu}(p,\mu)\psi^{\mu}(-p,\mu)$

$$M_{0} = \left(2N_{c} - \frac{2}{N_{c}}\right)g(\mu), \quad \Delta = \left(1 + \frac{1}{N_{c}}\right)f(\mu) \quad \frac{f(\mu)}{g(\mu)}\Big|_{\mu = \mu_{c}} = \left[\frac{N_{c}(N_{c} - 1)}{2}\right]^{\frac{1}{2}}$$

M_0 , Δ , and <iq⁺q> (N_f=2)

1st order phase transition occurred at $\mu \sim 320 \text{ MeV}$

Metastable state (mixing of σ and Δ) ignored for simplicity here

Chiral condensate with μ

$$\langle iq^{\dagger}q \rangle_{\mu} = 4N_c \int \frac{d^4k}{(2\pi)^4} \left[\frac{M(k,\mu)}{(k+i\mu)^2 + M^2(k,\mu)} \right]$$

S.i.N. H.Y.Ryu, M.Musakhanov and H.Ch.Kim, arXiv:0804.0056 [hep-ph] Magnetic susceptibility at finite μ

QCD magnetic susceptibility with externally induced EM field

$$\langle iq^{\dagger}\sigma_{\mu\nu}q\rangle_{F} = ie_{q}F_{\mu\nu}\langle iq^{\dagger}q\rangle_{\mathbf{N}}$$

Magnetic phase transition of the QCD vacuum

Effective chiral action with tensor source field T

$$\mathcal{S}_{\text{eff}}[T,\mu] = -\text{Sp}_{cf\gamma} \ln \left[iD - i\mu + iM(iD,\mu) + \sigma \cdot T\right]$$

Evaluation of the matrix element

$$\left[\frac{\delta}{\delta T_{\mu\nu}}\mathcal{S}_{\text{eff}}[T,\mu]\right]_{T=0} = \langle 0|\psi^{\dagger}\sigma_{\mu\nu}\psi|0\rangle_{F} = \text{Tr}_{cf\gamma}[S\sigma_{\mu\nu}]$$

1st order magnetic phase transition at μ_c

S.i.N. and H.Ch.Kim, arXiv:0805.0060 [hep-ph], accepted for publication in PLB Pion weak decay constant at finite μ

Pion-to-vacuum transition matrix element

$$\langle 0|A^a_\mu(x)|\pi^b(P)\rangle = i\sqrt{2}F_\pi\delta^{ab}P_\mu e^{-iP\cdot x}$$

Separation for the time and space components

$$\langle 0|\mathbf{A}^{a}(x)|\pi^{b}(P)\rangle = i\sqrt{2}F_{\pi}^{s}\delta^{ab}\mathbf{P}e^{-iP\cdot x}, \quad \langle 0|A_{4}^{a}(x)|\pi^{b}(P)\rangle = i\sqrt{2}F_{\pi}^{t}\delta^{ab}P_{4}e^{-iP\cdot x}$$

Effective chiral action with μ

$$\mathcal{S}_{\text{eff}}[\pi,\mu] = -\text{Sp}\ln\left[i\bar{\partial} + i\sqrt{M(i\bar{\partial})}U_5\sqrt{M(i\bar{\partial})}\right]$$

Renormalized auxiliary pion field corresponding to the physical one

$$\pi^a_{\rm phy} = \frac{1}{C_r} \pi^a$$

Effective chiral action with axial-vector source

$$\mathcal{S}_{\text{eff}}[\pi,\mu,J_{5\mu}^{a}] = -\text{Sp}\ln\left[i\bar{\partial} + \gamma_{5}\gamma^{\mu}\frac{\tau^{a}}{2}J_{5\mu}^{a} + \sqrt{M(i\bar{\partial},J_{5\mu}^{a})}U_{5}\sqrt{M(i\bar{\partial},J_{5\mu}^{a})}\right]$$

Using the LSZ (Lehmann-Symanzik-Zimmermann) reduction formula

$$i\sqrt{2}\delta^{ab}F_{\pi}(q^{2},\mu)q_{\mu} = \mathcal{K}_{\pi}\int d^{4}x\langle 0|T\left[A^{a}_{\mu}(x)\pi^{b}_{phy}(0)\right]|0\rangle e^{iq\cdot x}$$
$$= \frac{\mathcal{K}_{\pi}}{C_{r}(\mu)}\int d^{4}x\langle 0|T\left[A^{a}_{\mu}(x)\pi^{b}(0)\right]|0\rangle e^{iq\cdot x}$$

$$\langle 0|T[A^{a}_{\mu}(x)\pi^{b}(0)]|0\rangle = \frac{\delta^{2}\ln\mathcal{Z}_{\text{eff}}[\pi,\mu,J^{a}_{5\mu}]}{\delta J^{a}_{5\mu}(x)\,\delta J^{b}_{5}(0)} = \int d^{4}z \frac{\delta^{2}\mathcal{S}_{\text{eff}}[\pi,\mu,J^{a}_{5\mu}]}{\delta J^{a}_{5\mu}(x)\,\delta \pi^{b}(z)}\mathcal{K}_{\pi}^{-1}(z)$$

Analytic expression for the pion weak decay constant

$$F_{\pi}(\mu)P_{\mu} = \frac{4N_{c}}{C_{r}F_{0}} \int \frac{d^{4}k}{(2\pi)^{4}} \left[\underbrace{\frac{\sqrt{M(\bar{k})M(\bar{k}-P)}[(P_{\mu}-\bar{k}_{\mu})M(\bar{k})+\bar{k}_{\mu}M(\bar{k}-P)]}_{[\bar{k}^{2}+M^{2}(\bar{k})][(\bar{k}-P)^{2}+M^{2}(\bar{k}-P)]} - \underbrace{\frac{M(\bar{k})\sqrt{M(\bar{k})}\sqrt{M(\bar{k})}\sqrt{M(\bar{k}-P)}_{\mu}-M(\bar{k})\sqrt{M(\bar{k})}\sqrt{M(\bar{k}-P)}_{\mu}}_{\bar{k}^{2}+M^{2}(\bar{k})} \right]_{\text{nonlocal cont.}},$$

$$\bar{k} = (\vec{k}, k_4 + i\mu)$$

Local contributions

$$F_{\pi,\mathrm{L}}^{s}(\mu) = \frac{4N_{c}}{C_{r}F_{0}} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{(k^{2}+\mathcal{M}^{2})^{2}} \left[\mathcal{M}^{2} - \frac{1}{2}k^{2}\mathcal{M}\tilde{\mathcal{M}}' - 5\mu^{2}k_{4}^{2}\tilde{\mathcal{M}}'^{2}\right],$$

$$F_{\pi,\mathrm{L}}^{t}(\mu) = \frac{4N_{c}}{C_{r}F_{0}} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{(k^{2}+\mathcal{M}^{2})^{2}} \left[\mathcal{M}^{2} - \frac{1}{2}k^{2}\mathcal{M}\tilde{\mathcal{M}}' - \mu^{2}k_{4}^{2}\tilde{\mathcal{M}}'^{2}\right],$$

Nonlocal contributions

$$F_{\pi,\mathrm{NL}}^{s}(\mu) = -\frac{4N_{c}}{C_{r}F_{0}} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2} + \mathcal{M}^{2}} \left[\mathcal{M}\tilde{\mathcal{M}}' + \frac{1}{2}k^{2}\mathcal{M}\tilde{\mathcal{M}}'' - \frac{1}{2}k^{2}\tilde{\mathcal{M}}'^{2} - 4\mu^{2}k_{4}^{2}\tilde{\mathcal{M}}'\tilde{\mathcal{M}}'' \right]$$

$$F_{\pi,\mathrm{NL}}^{t}(\mu) = F_{\pi,\mathrm{NL}}^{s}(\mu).$$

When the density switched off,

$$F_{\pi}(0) = \frac{4N_c}{C_r F_0} \int \frac{d^4k}{(2\pi)^4} \left[\frac{\mathcal{M}^2 - \frac{1}{2}k^2 \mathcal{M}\tilde{\mathcal{M}}'}{(k^2 + \mathcal{M}^2)^2} - \frac{\mathcal{M}\tilde{\mathcal{M}}' + \frac{1}{2}k^2 \mathcal{M}\tilde{\mathcal{M}}'' - \frac{1}{2}k^2 \tilde{\mathcal{M}}'^2}{k^2 + \mathcal{M}^2} \right]$$

Time component > Space component

$$\begin{split} F_{\pi}^{s}(\mu) &\approx F_{\pi}^{\exp} + \mu^{2} \left[\frac{N_{c}}{F_{\pi}^{\exp}} \int \frac{d^{4}k}{(2\pi)^{4}} \left(\frac{8k_{4}^{2}\tilde{\mathcal{M}}'\tilde{\mathcal{M}}''}{k^{2} + \mathcal{M}^{2}} - \frac{10k_{4}^{2}\tilde{\mathcal{M}}'^{2}}{[k^{2} + \mathcal{M}^{2}]^{2}} \right) \right] \\ F_{\pi}^{t}(\mu) &\approx F_{\pi}^{s}(\mu) + \mu^{2} \left[\frac{N_{c}}{F_{\pi}^{\exp}} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{8k_{4}^{2}\tilde{\mathcal{M}}'^{2}}{[k^{2} + \mathcal{M}^{2}]^{2}} \right], \end{split}$$

Comparison with the in-medium ChPT K.Kirchbach and A.Wirzba, NPA616, 648 (1997)

$$F_{\pi}^{s}(\rho_{0}) = \left[1 + \frac{2c_{3}\rho_{0}}{(F_{\pi}^{exp})^{2}}\right] \left[1 - \frac{\Sigma_{\pi N}\rho_{0}}{(F_{\pi}^{exp})^{2}m_{\pi}^{2}}\right]^{-1},$$

$$F_{\pi}^{t}(\rho_{0}) = \left[1 + \frac{2(c_{2} + c_{3})\rho_{0}}{(F_{\pi}^{exp})^{2}}\right] \left[1 - \frac{\Sigma_{\pi N}\rho_{0}}{(F_{\pi}^{exp})^{2}m_{\pi}^{2}}\right]^{-1}$$

$$c_{3} < 0 \text{ and } c_{2} > 0$$

 $F^{s}/F^{t} < 0.5$

Critical *p*-wave contribution

$\frac{m_{\pi}^{*} (\text{MeV}) D_{5} (\text{GeV}^{2})}{139} = \frac{f_{t}}{f_{\pi}} \frac{f_{s}}{f_{\pi}} = \frac{f_{s}}{f_{\pi}}$	(2003)
139 -0.019 0.79 (0.77) 0.78 (0.57)	
$159 -0.025 0.69 \ (0.63) \ 0.68 \ (0.37)$	

GOR relation satisfied within the present framework

$$(m_{\pi}^* F_{\pi}^t)^2 = 2m_q \langle iq^{\dagger}q \rangle^*$$

Changes of the pion properties with μ

	F^s_{π}	F_{π}^{t}	m_{π}
$\mu = 0$	$93 { m ~MeV}$	$93 { m MeV}$	$139.33~{\rm MeV}$
$\mu = \mu_c \approx 320 \text{ MeV}$	$80.29~{\rm MeV}$	$82.96~{\rm MeV}$	$160.14~{\rm MeV}$
Modification	$16\%\downarrow$	$13\%\downarrow$	$15\%\uparrow$

Summary and Conclusion

Instanton with finite μ applied to following problems

- Pion EM FF for free space as an example
- QCD magnetic susceptibility: 1st-order magnetic phase transition
- Pion weak decay constant at finite density: *p*-wave contribution?

Perspectives

Systematic studies for nonperturbative hadron properties with μ Several works (effective chiral Lagrangian, LEC..) under progress Extension to the finite *T* (Dyon with nontrivial holonomy, Caloron)

Thank you very much for your attention!!