Highlights of RHIC Results

Ju Hwan Kang Yonsei University

2008 APCTP Workshop on "Nuclear Physics in Science Business Belt: Future Heavy Ion Accelerator in Korea"

1

QCD Phase Transition

- The colliding nuclei at RHIC energies would melt from protons and neutrons into a collection of quarks and gluons
- A QCD phase transition that the universe last went through ~1µs after the Big Bang

How to make such a condition and show that such a transition is occurred?

- □ What is RHIC?
 - Relativistic Heavy Ion Collider
- What does it do?
 - Collides Heavy Ions, Light Ions, protons, polarized protons
- To what energy?
 - 200 GeV x 200 GeV (pp to 500x500)
- How does it make heat?
 - By colliding Heavy ions which leave behind a hot vacuum i.e Baryon number =0

RHIC

RHIC's Experiments

RHIC runs (2001-2008)

RHIC Results

- Huge amount of data are accumulated from RHIC in the past 8 years
- Many interesting phenomena are observed
 - Strong elliptic flow of hadrons
 - Strong suppression of high pT jets
 - Modification of jet correlation
 - Strong suppression of J/ψ
 - Energy loss and flow of heavy quarks
 - Enhanced production of lepton pairs and photons
- These observations are consistent with formation of high temperature, high density partonic matter

Why Elliptic Flow ?

Azimuthal Anisotropy and Flow

For measured particles, azimuthal distribution w.r.t. the reaction plane (i.e. ϕ) can be expressed as Fourier series:

 $dN/d\phi = (1/2\pi) (1 + \Sigma 2v_n cos(n\phi))$

1) "Directed" flow if n=1 :

Centrality Dependence of Elliptic Flow

Parameterize azimuthal anisotropy of charged particles as

⁽PHOBOS : Normalized Paddle Signal)

Anisotropic Flow

• Same phenomena observed in gases of strongly interacting atoms

that is, a strongly coupled fluid

2000 µs

v2 of identified particles in PHENIX

Transverse kinetic energy as a scaling variable

Min. bias Au+Au

- Pressure gradients convert some work into kinetic energy
- Hence, KE_T is a natural variable to use for testing hydrodynamic behavior
- Very good scaling of v_2 with KE_T seen for $KE_T \le 1$ GeV
- Two separate branches appear for mesons and baryons at $KE_T > 1$ GeV
- Hint of quark degrees of freedom due to partonic flow

Quark Recombination Model

$KE_T \& n_{quark}$ scaling of v_2

High p_T particle production

Hard-scattering & Parton energy loss

Is suppression an initial or final state effect?

How to discriminate?
Turn off final state
only initial state effect
⇒ d+Au collisions

"Control" Experiment

D+A – the "control" experiment

Its a final state thing!

The Suppression is Final State Effect

R_{AA} of hadrons and direct photon (AuAu 200GeV)

- Ncoll scaling for direct γ
- Same suppression pattern for π⁰ and η:
 Consistent with parton energy loss and fragmentation in the vacuum
- Smaller suppression for the ϕ meson for 2<p_T<5 GeV/c

Quantitative analysis: contrain density parameters

Di-jet correlations

Jet on the "other" side?

Jetcorrelationsin cpetral ColdRold. reactions. Awaysidegget religanguatershipopartitionary 200 GleW

Dijet correlation

in two particle correlation In central Au+Au collisions, the peak in the far side $(\Delta \phi ~ \pi)$ is suppressed,

consistent with energy loss of the recoil jet.

Modification of jet correlation

Origin of the modification of jets?

An interesting interpretation of the modification is that it is Mach cone in the medium
 Scattered parton travels faster than the speed of sound in the medium, causing a shock-

• Scattered parton travels faster than the speed of sound in the medium, causing a wave

If this is the case, the opening angle can be related to the speed of sound in the medium...

Summary

- Huge amount of data are accumulated from RHIC in the past 8 years
- Many interesting phenomena are observed
 - Strong elliptic flow of hadrons
 - Strong suppression of high pT jets
 - Modification of jet correlation
 - Strong suppression of J/ψ
 - Energy loss and flow of heavy quarks
 - Enhanced production of lepton pairs and photons
- These observations are consistent with formation of high temperature, high density partonic matter

