Hypernuclear Physics at J-PARC

H. Bhang (Seoul National University) APCTP ISBB workshop APCTP, Nov. 14-16, 2008

- I. J-PARC
- II. Hypernuclear Experiments Scheduled at J-PARC.
- **III**. E18 experiment
- V. Summary

- First beam at Main Ring; Dec. 13, 2008.
- Np >- 100 times that of KEK-PS
- NK at K1.8 ; 10⁷ /spill(3-4sec)

- -Total budget
- 8 years construction from 2001.

- Op. fund ; 2000억/년
- Composition;

---- J-PARC PAC Approval summary after the 3rd meeting ----

						Slow line	priority	3rd PAC
		(Co-) Spokespersons	Affiliation(*)	Title of the experiment	Approval status	Day1?	Day1 Priority	Recommend ation
P01		V. Sumachev	Petersburg Nulear Physics Institute	Proposal on measurements of the spin rotation parameters A and R at the J-PARC in the resonance region of π -N elastic scattering	Rejected			
P02	Lol	P.Aslanyan	Laboratory for High Energy, JINR	Study of Exotic Multiquark States with $\Lambda-\text{Hyperons}$ and $\text{K}^{\text{O}}_{\text{S}}$ Meson Systems at JPARC	-			-
P03		K. Tanida	Kyoto U	Measurement of X rays from 🗉 Atom	Stage 1			-
P04		J. C. Peng; S. Sawada	U.of Illinois at Urbana-Champaign: KEK	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	Deferred			-
P05		T. Nagae	KEK	Spectroscopic Study of Ξ-Hypernucleus, ¹² ΞBe, via the ¹² C(K ⁻ , K ⁺) Reaction	Stage 2	Day1	1	-
P06		J.Imazato	KEK	Measurement of T-violating Transverse Muon Polarization in K $^{\circ}$ $ ightarrow \pi^{0}~\mu^{\circ}~ u$ Decays	Stage 1			-
P07		K.Imai, K.Nakazawa, H.Tamura	Kyoto U., Gifu U., Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 2			-
P08		A. Krutenkova	I TEP	Pion double charge exchange on oxygen at J-PARC	Stage 1			-
P09	Lol	T. Nakano	RCNP, Osaka U	Study of Exotic Hadrons with S=+1 and Rare Decay K* $->\pi^*\nu$ $\nu\text{-bar}$ with Low-momentum Kaon Beam at J-PARC	-			-
P10		A. Sakaguchi, T. Fukuda	Osaka U	Production of Neutron-Rich Lambda-Hypernuclei with the Double Charge-Exchange Reaction (Revised from Initial P10)	Stage 1			Stage 2
P11		K.Nishikawa	KEK	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2			-
P12	Lol	S. Choi	Seoul National University	Study of Parton Distribution Function of Mesons via Drell-Yan Process at J-PARC at High-p beamline	-			-
P13		T. Tamura	Tohoku U.	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Day1	2	-
P14		T. Yamanaka	Osaka University	Proposal for $K_L \rightarrow \pi^0 v v$ -bar Experiment at J-PARC	Stage 1			Stage 2
P15		M. Iwasaki, T. Nagae	RIKEN, KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3He(K-, n) reaction	Stage 2	Day1		-
P16		S. Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Stage 1			-
P17		R. Hayano, H. Outa	U. Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 2	Day1		-
P18		H. Bhang, H. Outa, H. Park	SNU, RIKEN, KRISS	Coincidence Measurement of the Weak Decay of ${}^{12}{}_{\Lambda}C$ and the three-body weak interaction process	Stage 1			-
P19		M. Naruki	RIKEN	High-resolution Search for Θ^* Pentaquark $$ in π^-p -> K ⁻ X Reactions	Stage 2	Day1		-
P20	Lol	Y. Kuno	Osaka U	An Experimental Search for μ¨-e¨ Conversion at Sensitivity of 10 ⁻¹⁸ with a High Intense Muon Source, PRISM	-			-
P21	Lol	Y. Kuno	Osaka U	An Experimental Search for μ — e Conversion at a Sensitivity of 10 ⁻¹⁶ with a Slow-Extracted Bunched Beam	-			-
P22		S. Ajimura, A.Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Interaction in A=4 Lambda-Hypernuclei (Revised from Initial P10)	Stage 1			-
-	Lol	T.Kajita	ICRR, Tokyo	A letter of Intent to extend T2K with a detector 2 km away from the JPARC neutrino source	-			-
-	Lol	K. Itabashi	RIKEN	Spectroscopy of eta mesic nuclei by (pi-,n) reaction at recoilless kinematics	-			-

More than half of the proposals are on Strangeness Nuclear Physics!!.

New Hadron Many-Body Systems with Strangeness

- 1987; INS first proposal
- . . . 10 years development.
- -'90/91;KEK-PS New K-spectrometers.

Successful SNP program extablished. K-arena was added.

- 1997; current J-Parc config.
- INS-KEK 합병
- KEK-JAEA; JHF-OMEGA→ J-PARC

S=-2 World

Energy Spectrum of S=-2 systems

E03 (K. Tanida); Measurement of X-rays from Ξ⁻ atom
 E05 (T. Nagae); Spectroscopic study of Ξ⁻Hypernucleus, ¹²_ΞBe via 12C(K-,K+) Reaction.

- E07 (K. Imai, K. Nakazawa, T. Tamura); Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method

E13 (H. Tamura); Gamma-Ray Spectroscopy of Light Hypernuclei

γ spectroscopy and ΛN Interaction

<u>Hyperball</u>

(Tohoku/ Kyoto/ KEK, 1998)

- Large acceptance for small hypernuclear γ yields
 Ge (r.e. 60%) x 14
 ΔΩ ~ 15%
 η peak~ 3% at 1 MeV
- High-rate electronics for huge background 1 TeV/sec, 100 kHz
- BGO counters for π⁰ and Compton suppression

Resolution of hypernuclear spectroscopy 1 MeV → 2 keV FWHM

<u>Results on ΛN interaction by E419+E930</u>

"Hypernuclear Fine Structure"

E15 (M. Iwasaki); A Search for Deeply-Bound Kaonic Nuclear States by In-Flight 3He(K-,n) Reaction

- Believed to be non-existing:
- However, Akaishi-Yamazaki (2002) predicted:
 - K⁻-p interaction so strong
 - strongly bound states
 - shrinks nuclei --> deeper bound states
 - deep enough:
 - the main decay channel KN--> Σ N closed
- BE > 100 MeV: narrow bound states
- High nucleon density: $\rho \sim (4-7) \rho_0$
 - chiral symmetry restoration?
 - deconfined quark-gluon phase?

K⁻ POTENTIALS AND BOUND STATES

• Y. Akaishi and TY, PRC (2002) Narrowing mechanism: $E_K < \Sigma \pi$ threshold • TY and Y. Akaishi, PLB (2002)

Detection Methods (1)

- Missing-mass spectroscopy
- (K-stop, n or p) ... KEK-PS E471/E549, FINUDA
 4He(K-stop, n)S+(3140) ...K-ppn ? (169MeV bound)
 4He(K-stop, p)S⁰(3115) ...K-pnn ? (193MeV bound)
 (K-, n or p) ... BNL-AGS E930 / KEK-PS E548
 1⁶O(K-, n)¹⁵OK- ... B_K= 130, 90, (50) MeV
 (K-, π-), (π+, K+) ... J-PARC

M. Iwasaki et al. : NIM A473 (2001) 286-301

Pion triggered neutron spectrum

4He(K⁻stop,n) reaction

Detection Methods (2)

Invariant-mass spectroscopy
 Heavy-ion collision ... GSI-FOPI
 K⁻ absorption at rest in a nucleus ... FINUDA

$$\begin{array}{c} p + \pi^{-} \\ K^{-}pp \rightarrow \Lambda + p \end{array} \begin{array}{c} \text{three final particles} \\ \text{to be detected} \\ K^{-}pn \rightarrow \Lambda + n \ , \ \Sigma^{-} + p \\ K^{-}ppn \rightarrow \Lambda + d \end{array}$$

Observation of a *K*-pp bound system

E18; Non-Mesonic Weak Decay (NMWD) & Issues

1. B-B Weak Interaction ;

 $\Lambda + N \rightarrow N + N$ ($\Delta S=1 B-B W.I.$)

- So far the only means of exploring this weak interaction.

- 2. Γ_n , Γ_p measurement; Γ_n/Γ_p puzzle problem.
- 3. Asymmetry ; The current concern.
- 4. $\Delta I = 1/2$ Rule ; JPARC-PS E22
- 5. The 3-body interaction process, 2N-NMWD: JPARC E18
 - Not experimentally identified yet, though predicted to be a significant component of NMWD.

Γ_n/Γ_p puzzle and the previous searches

2. Recent Development of $\Gamma_n/\Gamma_p^{\text{theory}}$: 0.3 ~ 0.7

K.Sasaki (Direct Quark), Nucl. Phys. A669 (2000) 371D. Jido (Heavy Meson Exc), Nucl. Phys. A694 (2001) 525

Coincidence Measurement (KEK-PS E462/E508)

- To exclude FSI effect and
 - 3-body decay in $\Gamma n/\Gamma p$ and
 - to identify 2N channel,
- \rightarrow Exclusive measurement of

each decay channel.

Proposed setup of the experiment

20cm

Coincidence Yields (NN correlations)

Quenching of Singles Yield

1. Quenching in both p and n spectra from that of INC.

- What would be the mechanism for the nucleon Quenching?
 → Stronger FSI & 3-Body process.
- FSI ; n & p are indistingushable (isospin indep.) → HE similarity.
 LE behavior ; Cross over effect → LE p enhancement.
- 4. Instead, What observed \rightarrow LE n enhancement.
- 5 What would be the source of the LF n enhancement???

The signatures of (2N)-NMWD processes were found both in the singles and coincidence data. All of them indicates fairly large Γ_{2N} comparabel to Γ_{1N} .

J-PARC E22 Experiment ($\Delta I = 1/2$ rule)

Properties of LN weak interaction

- study on non-mesonic weak decay (NMWD) in hyper nuclei \rightarrow AN weak interaction
 - spin/isospin structure
 - parity information

determination of partial decay amplitudes

 \Box measurement of np-ratio (G_n/G_p) of 4_L He

$\Lambda n \rightarrow nn, \Lambda p \rightarrow np$

- Studies toward test of "∆I=1/2 rule"
 - \square " Δ I=1/2 rule" valid or not in NMWD
 - \Box Study on A=4 hypernuclei (⁴_LHe and ⁴_LH)
 - □ 1st step for the study

$\Delta I = \frac{1}{2}$ rule

- The strangeness changing weak decay strongly favors the $\Delta I = 1/2$ transition.
- The exp ratio $A(dI=1/2)/A(dI=3/2) \sim 20$ in the decay of K and hyperon.
- The mechanism for the dominance of dI=1/2 is not well understood yet.

Nonmesonic decay of A=4 hypernuclei

hypernucleus	Λn→nn	$\Lambda p \to np$
${}^{4}{}_{\Lambda}\mathrm{H}$	¹ S ₀ , ³ S ₁	¹ S ₀
⁴ _Λ He	¹ S ₀	¹ S ₀ , ³ S ₁
⁵ _A He	¹ S ₀ , ³ S ₁	¹ S ₀ , ³ S ₁

Allowed initial states for A=4, 5 hypernuclei

- $\Gamma p({}^{4}_{\Lambda}H), \Gamma n({}^{4}_{\Lambda}He)$
- \Rightarrow we can measure ¹S₀ amplitudes directly.
- If $\Delta I=1/2$ rule holds, $\Gamma n({}^{4}_{\Lambda}He)/\Gamma p({}^{4}_{\Lambda}H)=2$.

 \Rightarrow we can check the validity of the $\Delta I=1/2$ rule in B-B weak interaction.

Existing experimental results

$$\label{eq:relation} \begin{split} &\Gamma n({}^4_\Lambda He)\,/\Gamma_\Lambda = 0.01^{+0.04}/_{-0.01} \;(\text{KEK}), \, 0.04 \pm 0.02 (\text{BNL}) \, \text{NP A639(1998)261c} \\ &\Gamma p({}^4_\Lambda He)\,/\Gamma_\Lambda = 0.16 \pm 0.02 (\text{KEK}), \, 0.16 \pm 0.02 (\text{BNL}) \, \, \text{NP A639(1998)251c} \end{split}$$

Decay Counter Setup

Basic concepts are based on the setup of E462/E508 experiments.

- CDC+T1(Timing for charged one)+T2(neutron)
- Side veto to reject passing through ptls
- Share most of the detection system with E22

Summary;

1. J-PARC is a unique and competitive facility located near to us and would be a very convenient place for us to do experiments. 2. It is just about to start beam extraction and Experiments will start from next year. This initial stage would be very important time for us to formulate our future fruitful activities and results from it. 3. It is desirabel to develope strong oversea research activity as one of the two pillars to support future nuclear physics. ABSI can be another pillar.

4. In order to upgrade the oversea activities, strong competitive domestic facility is absolutely necessary, directly or indirectly.
5. Therefore the domestic and oversea programs are complimentary to each other as we can see in the IL-JOO-MOON (fig).

Summary

- 1. The long standing Γ_n/Γ_p discrepancy problem has finally been solved in corporation of the theoretical and experimental efforts.
- Now after the resolution, there are remaining important problems, such as Ay (asymmetry parameter) inconsistency, ∆I =1/2 rule and the contribution of the 3-body 2N-NMWD channel.
- 3. The signatures of 3-body NMWD processes were found both in the singles and coincidence data. All of them indicates fairly large Γ_{2N} comparabel to Γ_{1N} .
- 4. There are two NMWD experiments approved for J-PARC.
 1) E18 ; Γ_{2N} (3-body decay process), Γ_n , Γ_p
 2) E22 ; ΔI =1/2 rule

Decay Modes and Motivation

- 1987; INS first proposal
 . 10 years development.
 '90/91;KEK-PS New K-spectrometers.
 - Successful program extablished. K-arena was added.
- 1997; current J-Parc config.
- INS-KEK 합병
- KEK-JAEA; JHF-OMEGA \rightarrow J-PARC

Table 1 Main beam parameters

Injected H ⁻ beam			
Energy		200	MeV
Peak current		20	mA
T Injection period		400	µsec
Width of micropulse		~ 190	nsec
Repetition rate		50	Hz
Average current		200	μA
Normalized emittance	ε (ε _{xn} , ε _{yn})	2.6	π·mm·mrad
Energy spread	-	± 0.1	%
Beam just after injection			
Absolute emittance	ε _x	150	π·mm·mrađ
	εγ	125	π·mm•mrad
Revolution frequency	5	1.3	MHz
Number of beam bun	ches	2	
Bunch length		~ 190	nsec
Number of particles in	n a bunch	1.25 x	1013
Beam at the extraction			
Energy		1 (1.5)	GeV
Revolution frequency		2.3	MHz
Bunch length		~ 100	nsec
Absolute emittance	Horizontal	42.9	π∙mm·mrad
V	/ertical	35.7	π·mm·mrad
Momentum spread		±1	%

Asymmetry parameter of ${}^{5}_{\Lambda}$ He

Proposal

- Main Objects :
 - \square To measure the 3-body decay process, namely $\Gamma_{2N},$
 - the 2-nucleon induced NMWD in 10% error level
 - □ To measure all decay widths of NMWD in 10% error level.
- Reaction : ${}^{12}C(\pi^+, K^+)$ at $P_{\pi}=1.05$ GeV/c with $10^7\pi/\text{spill}$.
- Spectrometer & Detector :
 - □ SKS Kaon spectrometer; 100 mSr.
 - \Box Coincidence Detectors; 2π Sr
- Yield Estimation and Expected Results:
 - \Box N_{nbb}(nn) ~ 300 (23)
 - □ N_{nbb}(np) ~ 375 (12)
 - □ N_{bb}(pp) ~ 90 (8)
 - □ N(NNN) ~ (125) (5)

Asymmetry parameter of ${}^{12}{}_{\wedge}C$, ${}^{11}{}_{\wedge}B$

Comparison with recent results

Models of $\Lambda N \rightarrow NN$ interaction (I)

- Meson Exchange Models; ∆I=1/2 rule adopted.
- OPE model(1967) ; V_{π} by Adams.
 - $\rightarrow \Gamma_{\rm NM} OK$, but very small Γ_n/Γ_p .
- Heavy meson exchange(HME) model;
 Mckeller/Gibson, Dubach, Oset, Ramos,...
 - Extended to heavier Mesons, $\boldsymbol{\pi},\,\boldsymbol{K},\,\boldsymbol{\rho},\,\boldsymbol{\omega},\,\ldots$
 - $\Delta I = 1/2$ rule adopted.
 - Found that π and K are the main players.
 - No drastic effect with heavyier Mesons.

¹² _A C	$\Gamma_{ m nm}$	$\Gamma_{\rm n}/\Gamma_{\rm p}$	$\mathfrak{a}_{\mathrm{NM}}$
π K 2π/σ 2π ω (Jido)	0.77	0.53	
πρΚΚ*ωη (Ramos, Parr)	0.55-0.73	0.29-0.34	-0.73
(Barbero et al.)	1.17	0.21	-0.53
Experiment	0.929±0.027±0.016 [29]	0.51±0.13±0.04 [28]	$-0.14 \pm 0.28 \pm \frac{0.18}{0.00}$ [30]

Models of $\Lambda N \rightarrow NN$ interaction (II)

- 2. Hybrid quark-hadron Model
- 6-q Bag model + V_{π} ; Cheung et al.,
- Direct Quark(DQ) Mechanism; V_{DQ} + V_{ME}
 - $\Delta I = 1/2$, 3/2 both allowed.
 - Oka, Sasaki, . .
 - considerable improvement on Γ_n/Γ_p
- Recently Sigma exchange term (OSE) added.

${}^{5}_{\Lambda}$ He (Sasaki)) Γ_{nm}	$\Gamma_{\rm n}/\Gamma_{\rm p}$	$\mathfrak{a}_{_{ m NM}}$
π	0.372	0.134	-0.441
π+ K	0.304	0.466	-0.362
π+ K+DQ	0.523	0.720	-0.678
π+ K + σ	0.392	0.548	0.571
π+ K+ σ + DQ	0.392	0.449	0.219
Experiment	0.411±0.023±0.0 06[29]	0.45±0.11±0.0 3[27]	$0.08 \pm 0.08 \pm 8.88$ [30]

1. π + K + DQ ; DQ model applied to light HN.

2. π + K reproduces underestimated, $\Gamma n/\Gamma p$ well reproduced and the asymmetry parameter quite different from the small experimental value.

- 3. DQ contribute to Tnm significantly. However, the a become even worse.
- 4. σ included; Now it explains all the features .
- 5. HME and DQ reproduces similar $\Gamma n/\Gamma p$ and anm, but of different isospin str.
- 6. One has to test the $\Delta I = 1/2$ rule experimentally. (J-PARC E22)

Comparison with recent results

Kaon Beam Profile at FF of K1.8

051011

K1.8 Performance Summary

ŝ

	K1.8	
	(50 GeV-15µA)	(30 GeV-9µA)
Max. Mom. (GeV/c)	2	
Length (m)	45.853	
Acceptance (msr.%)	1.4	
K-(π) Intensity (ppp)#		
1.8 GeV/c	6.6E+06	1.4E+06
1.5 GeV/c	2.7E+06	0.54E+06
1.1 GeV/c	0.38E+06	0.08E+06
Electro-static	750kV/10cm	
Separator	6m×2	
Single Rate @ MS2 @ 1.8 GeV/c ^{\$}	>33E+06	>8E+06
K⁻/π⁻ @ FF @ 1.8 GeV/c	8	6.9
X/Y(rms) size @ FF (mm)	19.8/3.2	

using Sanford-Wang formula, assuming 1pulse=3.53s(0.7s flat top)

\$ Signle Rate Estimation for Trigger/Tracking Devices to be placed just after MS

1. B-B Weak Interaction ;

 $\Lambda + N \rightarrow N + N$ ($\Delta S=1 B-B W.I.$)

- So far the only means of exploring this weak interaction.
- 2. Γ_n , Γ_p measurement; Γ_n/Γ_p puzzle problem.
- 3. Asymmetry ; The current concern.
- 4. $\Delta I = 1/2$ Rule ; JPARC-PS E22
- 5. The 3-body interaction process, 2N-NMWD: JPARC E18
 - Not experimentally identified yet, though predicted to be a significant component of NMWD.

Detection Efficiency of nucleon pairs and Expected Yields

	E508	E18
N _π	2x10 ¹²	5×10 ¹²
dN _π /dt	4×10 ⁶ /spill	10 ⁷ /spill
T(arget)	4.3g/cm ²	4.3g/cm ²
N _{HY} (g.s.)	~62K	2.5*62K
У _{ьь} (np)	116	~1160
Y _{bb} (nn)	43	~430
У _{ьь} (рр)	8	~90
Y _{nbb} (np)	12	~375
Y _{nbb} (nn)	23	~300
Y _{nnn}	3	(~45)
Y _{nnp}	2	(~80)
$\sigma_{stat}(\Gamma_n/\Gamma_p)$	28%	~10%
$\sigma_{stat}(\Gamma_{2N})$		~10%

bb: back-to-back nbb: non-back-to-back