## Science with KoRIA

Seonho Choi Pohang, Nov. 15, 2008



## Overview

- Nuclear Structure
- Nuclear Astrophysics
- Fundamental Symmetries
- Other Applications
- Summary



## Nuclear Structure



- Probing the disappearance of shell structure
- Is shell model still valid in neutron rich nucleus?
- Neutron rich, double magic nuclei
  - <sup>56</sup>Ni, <sup>78</sup>Ni, <sup>100</sup>Sn,
    <sup>132</sup>Sn



# Pairing & Superfluidity

- Pairing of fermions in neutron (or proton) rich environment
- Understand the cooling of the neutron stars
- Two nucleon transfer studies on various nuclei



## **Collective Motion**



- The evolution of collective motion in complex nuclei
  - Deformation from spherical nucleus
  - Collective behavior of exotic nuclei



## Neutron Skins, Halos

- Nuclei near the neutron drip line
  - Model for the exotic neutron-rich environment of neutron stars
- Discovery of new collective modes
  - low energy iso-vector vibrational mode
  - may change neutron-capture cross sections
    affect r-process



## New Elements



- Production and Naming
  - Koreanium project



# Nuclear Astrophysics

- Origin of Elements
- Explosive processes in the universe
- Composition of neutron stars



# Origin of Elements

• Formation of the elements from C to U

- Stars, novae, x-ray bursts & supernovae
- Calculation of supernova
  - About 1500 isotopes involved, 10% of them stable







## Nuclear Data

- About 15,000 possible reactions
  - n, p,  $\alpha$ ,  $\gamma$ ,  $\nu$  in entrance and exit channel
    - Large volume of nuclear data required
    - The most critical ones to be measured



# Explosive Nucleosynthesis

#### r-process

- rapid neutron capture
  - merging binary pair of neutron stars
  - neutrino powered wind in supernova explosion
- formation of neutron rich elements
- critical information
  - BE,  $\beta$  lifetime, n-capture  $\sigma$
  - formation of "waiting point"





### 52

## Other Processes

### rp-process

- rapid proton addition
- neutrino powered wind in supernova explosion
- X-ray burst
- gamma-process



## Neutron Stars



 Equation of State for neutron rich nuclei



# Specific Examples

- BE, lifetime,  $\sigma$  for nuclei along r-process line
- BE, lifetime,  $\sigma$  for nuclei along rp-process line
- Cross sections for the production of potential targets for gamma-ray astronomy
  - <sup>22</sup>Na, <sup>26</sup>Al, <sup>44</sup>Ti, <sup>56,57</sup>Co, <sup>60</sup>Fe
- Charge-exchange reactions on unstable nuclei in the iron group



## Examples (cont.)

- $p \& \alpha$  capture cross sections on heavy proton-rich nuclei up to lead
- Cross sections for a large variety of nuclear reactions to calibrate parameters of theories
- n-capture cross sections along the path of the s-process



# Fundamental Symmetries

- Search for non-zero EDM
  - Evidence for CP or T symmetry violation
  - Enhanced effect of CP-violating interactions
    - <sup>229</sup>Pa, <sup>223</sup>Ra, <sup>225</sup>Ra, <sup>223</sup>Rn
    - Production of the isotopes and measurement of EDM



# Other Applications

- Stockpile stewardship
- Materials science
- Medical research
- Nuclear reactors



# Required Specifications

- High power linear accelerator
  - 200 MeV, 400 kW
  - Superconducting linac
  - 200 MeV/u for heavy ions (600 MeV proton)
  - ECR ion source, RFQ at room temp.



# Summary

- Nuclear Structure
  - Expand into neutron or proton rich exotic nuclei
- Nuclear Astrophysics
  - Origin of heavy elements
  - Search for new elements
  - Explosive processes in the universe



# Summary

• Fundamental Symmetries

• New enhanced way to search for EDM

- Other Applicaitons
  - Green science and technology
  - Materials science
  - Medical science



## Dream High

- Emerging field
- High potential for new discoveries
- Boost the basic research in Korea

