전자 맴돌이 공명(ECR) 이온원 개발 연구

0

Low Energy Heavy-Ion Beam Facility at Korea Basic Science Institute

Presentation

박진용, 안정근 이효상, 이병섭, 원미숙, 김종필, 윤장희 (Pusan National University

Korea Basic Science Institute)

&

Heavy Ion Meeting 2008-11

1. Low Energy Heavy-Ion Beam Facility for fast neutron production

- 2. Fast Neutron Radiography & Applications
- 3. Superconducting ECR Ion Source and Prototype ECR Ion Source Project at KBSI
- 4. Current Status and Prospects

Schematic view of the Heavy-Ion Beam Facility

Featured Specifications

ECRIS	S-ECR : 10kW, 28GHz, 3W G-M cooler (4K) PM-ECR: 1kW, 2.45GHz
RFQ	8 keV/u → 0.6 MeV/u 200MHz, Q/M=1/2, Length ~2m, Diameter 35cm
HI-DTL	0.6 MeV/u →4 MeV/u 200MHz, Q/M=1/2, Length ~3.2m Diameter 35cm
Production Target	Hydrogen Gas Target at 500Torr
Beam Current	Li $^{3+}$ 5mA / Ar $^{8+}$ 2mA / Kr $^{13+}$ 0.6 mA / Xe $^{20+}$ 0.3 mA, Fast neutron 10 12 /s with Li $^{3+}$ 1mA

Neutron radiography

- Penetration thru high-Z material
- Sensitive to Low-Z material

Fast Neutron

 ${}^{3}H(d,n)^{4}He$ ${}^{2}H(d,n)^{3}He$ ${}^{7}Li(p,n)^{7}Be$ $p({}^{7}Li,n)^{7}Be$

Hadron and Nuclear Physics Laboratory

Neutron radiography

- Penetration thru high-Z material
- Sensitive to Low-Z material

Fast Neutron

 $^{3}H(d,n)^{4}He$ $^{2}H(d,n)^{3}He$ $^{7}Li(p,n)^{7}Be$ $p(^{7}Li,n)^{7}Be$

Neutron radiography

- Penetration thru high-Z material
- Sensitive to Low-Z material

Fast Neutron

 $^{3}H(d,n)^{4}He$ $^{2}H(d,n)^{3}He$ $^{7}Li(p,n)^{7}Be$ $p(^{7}Li,n)^{7}Be$

0

Gamma-ray(Ir-192) Radiography X-ray(200 KeV) Radiography

Neutron absorption

Neutron Radiography

Hadron and Nuclear Physics Laboratory

Fast Neutron Beam Facility

New York

Hadron and Nuclear Physics Laboratory

Application of the ECR Ion Source

0

Imaging of Deformed metal surfaces

X-ray source

Polishing

High energetic X-ray (~100 keV) without High voltage Easily change the X-ray energy High x-ray flux (~ 10R/h ~ 100msr/h)

Helper 이나이는 하드론 및 핵물리연구실 Hadron and Nuclear Physics Laboratory

PECRIS beam intensity Xe^{10+} 70 μ A EUV power 100mW/2 π sr 18 GHz ECRIS beam intensity Xe^{20+} 300 μ A $Xe^{10+} \sim 3mA$ EUV power $4W/2\pi$ sr 28GHz ECRIS ~ 100W/2 π sr

Hadron and Nuclear Physics Laboratory

Current Trends in Development of the ECR Ion Source

- Low cost and Compact ECRIS -> Permanent magnet ECRIS
- High current and multiply charged Ion Source
 -> Superconducting ECRIS

Principle of the ECR Ion Source

- -----

Here The American Hadron and Nuclear Physics Laboratory

28GHz 10kW Superconducting ECR Ion Source with $B_{max} = 4T$

Target Ion

- Li ³⁺ 5mA / Ar ⁸⁺ 2mA
- Kr ¹³⁺ 0.6 mA / Xe ²⁰⁺ 0.3 mA

- 전도 냉각형 고온 초전도 자석 (높은 안정성, 저렴한 유지 비용)
- Volume Type ECR Zone 설계 (에너지 전달 효율 증대)
- Hexapole 자석을 위한 고강도 구조 설계
- High-B mode 운영을 위해 설계 수정 중

(High intensity beam 산출)

- 28 GHz Gyrotron 설계 진행중

Optimized configuration of permanent magnets

0

Hadron and Nuclear Physics Laboratory

Hadron and Nuclear Physics Laboratory

Geometry of Prototype ECRIS

 $\phi 100 \times \phi 60 \times T150 mm^3$

Opera-3D Simulation Results

Opera-3d > COLOUR OPTION=LOAD LABEL=MAGNET

Hadron and Nuclear Physics Laboratory

Opera-3d > COLOUR OPTION=SET RED=213 GREEN=214 BLUE=250

Colour 65 changed to Red: 213, Green: 214, Blue: 250, Opaque Opera-3d > THREED

Opera-3D Simulation Results

Hadron and Nuclear Physics Laboratory

Schematic view of Prototype ECR ion source

Permanent Magnet

 $\phi 100 \times \phi 60 \times T150 mm^3$

$\phi 195 \times \phi 160 \times T20 mm^3$

Permanent Magnet & Structure

01

Here The American State The American State Stat

● 테스트 벤치 구축

- -----

Here The American State The State S

● 2.45GHz 안테나 마이크로웨이브

A CONTRACT

Here 이나 아드론 및 핵물리연구실 Hadron and Nuclear Physics Laboratory

A Design Contract of the Contract of Co

• Chamber

Here 이 하드론 및 핵물리연구실 Hadron and Nuclear Physics Laboratory

● Prototype ECR 이온원

Here The American Series Hadron and Nuclear Physics Laboratory

이온화 챔버 하우징 가스 공급/조절 장치

0

ECR용 영구자석 시스템

- Prototype ECR용 영구자석 제작
- 고주파 발생기 제작
- 이온화 챔버 하우징 제작
- 진공 및 가스 조절 장치 제작
- 플라즈마 실험 다음 주 진행

● Prototype ECR 이온원 진공 테스트

New York

Ion Beam Extraction

HFT LL 하드론 및 핵물리연구실 Hadron and Nuclear Physics Laboratory

Roadmap

New York

0

HIFT TLL 하드론 및 핵물리연구실 Hadron and Nuclear Physics Laboratory

Requirements for Neutron Radiography

01

Hadron and Nuclear Physics Laboratory