2008 APCTP Workshop on

"Nuclear Physics in Science Business Belt: Future Heavy Ion Accelerator in Korea" APCTP, Pohang, Korea

Heavy-Ion Experiments at Relativistic Beam Energies for Next Decades

Byungsik Hong

Korea University

<u>Outline</u>

- Motivation
- Prospects of high-temperature QGP (ALICE, ATLAS & CMS at LHC)
- Prospects of high-density QGP (CBM at FAIR)
- Summary

Short History

- 1. First ion accelerator at relativistic beam energies
 - BEVALAC: BEVATRON+HILAC (1971-1993)
 - Used a very similar language as we are using nowadays
 - Found several phenomena that we are investigating nowadays (Flow, meson production, EoS, etc.)
- 2. First heavy-ion accelerator at relativistic beam energies
 - SIS (1990-present)
 - Accelerate truly heavy beams up to Pb
 - Measured subthreshold particle production
 - Precise and systematic investigation
- 3. First heavy-ion accelerator at ultra-relativistic beam energies
 - AGS and SPS (1986-present)
 - Opened the meson dominant region
 - Found several abnormal nuclear effects
 (Strangeness enhancement, Dileption enhancement in low & intermediate mass regions, J/ψ suppression, etc.)
 - Motivated new accelerators that I will discuss in this talk

Nuclear Phase Diagram

Purpose of Relativistic Heavy-Ion Collisions

- 1. Production of new kinds of matter
- 2. Discovery and systematic investigation of nuclear effects on the fundamental interaction, in particular QCD
- 3. Understanding the primordial state of the universe and astronomical objects like neutron star

High-Temperature QGP (ALICE, ATLAS & CMS at LHC)

	AGS	SPS	RHIC	LHC
$\sqrt{s_{NN}}$ (GeV)	5	20	200	5500
Increasing Factor		x4	x10	x28
y range	±1.6	±3.0	±5.3	±8.6

- LHC energies are far exceeding the range of previous heavy-ion accelerators
 - Extended kinematic reach for pp, pA, and AA collisions
 - New properties of the initial state and saturation at mid-rapidity
 - A hotter, denser, and longer lived partonic matter
 - Increased cross sections and availability of new hard probes
- New energy regime will open a new window on hot and dense QCD matter physics: another large energy jump!

Energy Density at LHC

Physics

Production Rate at LHC

Extension of Low-x Reach

- 1 RHIC Au-Au 10⁻¹ 10⁻¹ 10⁻² 10⁻² LHC Pb-Pb **X**_{min} pp 10⁻³ 10⁻³ 10² 10⁻⁴ 10⁻⁴ Mass (GeV) 10⁻⁵ 10⁻⁵ **J**/ψ 10⁻⁶ 10⁻⁶ 10³ **10**⁴ 10² 10 Energy (GeV)
- RHIC first opened the low-x region for new physics (CGC?)
- LHC will lower the low x-reach by another factor 30
 - Lowest x at LHC 2 x 10-6 in pp
 - ~3 x 10⁻⁶ in pp
 - ~10⁻⁵ in PbPb

ATLAS

LHCb

ALICE Detector

ATLAS Detector

CMS Detector

Detector Acceptance

Different technologies but close acceptances – possibility to cross-check

Charged Particle Multiplicity

Hadron Spectra at Low p_T

Ref) J. F. Grosse-Oetringhaus, Physics at LHC 2008, Split

November 14-16, 2008

Physics

Elliptic Flow

Hydro prediction for low LHC multiplicity

- Equation-of-State/Viscosity of Fluid
- Characterization of microscopic dynamics underlying collectivity

Level 1 (Muon Chambers+Calorimeters)

M. Ballitjin, C. Loizides, G. Roland, CMS-NOTE-2006-099

Level 1	Pb+Pb	p+p	
Collision Rate	3 kHz (8 kHz peak)	1 GHz	
Event Rate	3 kHz (8 kHz peak)	32 MHz	
Output Bandwidth	100 GByte/sec	100 GByte/sec	
Rejection	None	99.7%	

High-Level Triggers (high E₁-jet, γ, e, μ)

- 12k CPU x 1.8 GHz ~ 50 Tflops (x 2 RCF)
- Run "offline algorithm" on every Pb+Pb event
- Significantly enhanced statistics for hard processes (see the right figure)

High-Level Trigger	Pb+Pb	p+p
Input Event Rate	3 kHz (8 kHz peak)	100 kHz
Output Bandwidth	225 MByte/sec	225 MByte/sec
Output Rate	10 – 100 Hz	150 Hz
Rejection	97-99.7%	99.85%

High-p_T Hadrons in CMS Physics C. Roland, 100 4 @•••••••••••••••••••••••••••••••••• [%] $0.0 < |\eta| < 0.5$ CMS-NOTE-2006-001 & 110 [%] 90 -0.5 <n <0.5 3.5 Momentum 2 <n < 2.5 resolution 80 **Good efficiency** Percentage Pb+Pb, dN/dy = 350070 60 Efficiency dN/dy = 350050 o Fake Rate 40 30 0.5 20 10 15 20 25 30 35 40 45 50 10 Low fake rate p_T [GeV/c] Ъ 20 15 25 10 p_r[GeV/c] Medium Density 10^{12} N_{ev}(2π թ₁)⁻¹d՞N/dŋ dp_T [c²/GeV²] Charged particles | n|<2.5 0-10% central AuAu @\snn = 200 GeV, PHENIX data 10 10-20% central, x 10 20-30% central, x 10 1Ø 30-40% central, x 10 PbPb @\sum = 5.5 TeV, CMS MC 40-50% central, x 10 50-60% central, x 10 60-70% central. x 10 -12 R_{AA} 70-80% central, x 10 ⁻¹⁴ GLV: dN_o/dy = 2000 - 4000 80-90% central, x 10 Charged RHIC LHC particle spectra 10-1 PQM: $\langle \hat{q} \rangle$ = 30 - 80 GeV²/fm

November 14-16, 2008

November 14-16, 2008

Full Jet Finder in CMS

Iterative cone(R=0.5)+Background subtraction Pb+Pb (0.5 nb⁻¹: 1 year of running) 120 UND⁴ 10⁴ 10² 10⁻¹ _____ High efficiency Calorimeter Jets n|<2 Efficiency, Purity (%) 0-10% central and purity 10-20% central, x 10⁻ 20-30% central, x 10⁻² for $E_T > 50$ GeV 30-40% central, x 10⁻³ 40-50% central, x 10⁻⁴ BARREL 50-60% central, x 10⁻⁵ $|\eta|_{\text{iet MC}} \le 0.3$ 60-70% central, x 10⁻⁶ 100 GeV jet in 10 70-80% central, x 10⁻⁷ 40 80-90% central, x 10⁻⁸ a Pb+Pb event, - Purity 10^{-6} - Efficiency after background 20 ---10⁻⁶ subtraction Er",GeV 18 10^{-10} 0 16 100 150 200 250 300 350 14 E₊ MC jet in cone 0.5, GeV 10⁻¹² 12 10 iet E_T resolution, (%). reco cone 0.5 ¹ 0 1 0 5 0 5 05 10^{-14} 10⁻¹⁶ BARREL $|\eta|_{\text{iet MC}} \le 0.3$ 10-18 50 100 150 200 250 300 350 400 450 E_τ [GeV] Jet spectra up to $E_{T} \sim 500 \text{ GeV}$ Good energy resolution Jet Quenching Effect • without background with background, dNch/dy=5000 for E_T>100 GeV 0 by using True Jets 100 150 200 250 300 350 E_T MC jet in cone 0.5, GeV

Photon-Tagged Jets in CMS

C. Loizides, QM08

How is the energy loss distributed in the jet fragmentation cone?

Photons

Tagging parton energy
Sophisticated isolation/shape cut technique was developed (S/B was improved by about 15)
-E_T(γ)>100 (or 70) GeV

Physics

Other Jet FF Measurements

ALICE

ATLAS

- Initial measurements up to 100 GeV (untriggered charged jets only)
- Detailed study of fragmentation possible
- Sensitive to energy loss mechanism
- Accuracy on transport coefficient <q-hat> ~20%

Quarkonium Production

H. Satz, J. Phys. G 32, R25 (2006)

State	J/ψ	χ _{c0} (1P)	ψ(2 S)	Ƴ(1S)	χ _{b0} (1P)	Υ(2S)	χ _{b0} (2P)	Ƴ (3S)
Mass [GeV]	3.096	3.415	3.686	9.46	9.859	10.023	10.232	10.355
B.E. [GeV]	0.64	0.2	0.05	1.1	0.67	0.54	0.31	0.2
T _d /T _c	1.1	0.74	0.15	2.35	1.13	0.93	0.83	0.74

Due to the feed down from higher states, we expect the step-wise suppression of J/ψ and $\Upsilon \Rightarrow$ Measure as a function of p_T and also of collision centrality

Quarkonia in CMS

Physics

Quarkonia in ALICE

Ref) C. W. Fabjan, QM 2008, Jaipur

One Month (10⁶ sec) Pb+Pb collisions at nominal luminosity

Expected number of quarkonia in dimuon channel: $J/\Psi \sim 3 \times 10^5$, Y ~ 8000

High-Density QGP (CBM at FAIR)

FAIR: Facility for Antiproton and Ion Research

FAIR Overview

Physics

Research Program at FAIR

- 1. Rare Isotope Beams (Super FRS)
 - Nuclear structure far off stability
 - Nuclear synthesis in stars and supernovae
- 2. Antiproton Beams (Panda)
 - Quark confinement potential
 - Search for gluonic matter and hybrids
- 3. High-Energy Nuclear Beams (CBM)
 - <u>CBM : Compressed Baryonic Matter</u>
 - Baryonic matter at the highest density (neutron stars)
 - Phase transition and critical endpoint
 - In-medium properties of hadrons
- 4. Short pulse Heavy Ion Beams
 - Fundamentals of nuclear fusion
- 5. Atomic Physics and Applications
 - Highly charged atoms & low energy antiprotons
 - Radiobiology
- 6. Accelerator Physics
 - High intensity heavy-ion beams
 - Rapidly cycling superconducting magnets
- November 14-16, High-energy electron cooling & dynamical vacuum

- 1. QCD Critical Endpoint
 - Excitation function of event-by-event fluctuation (K/ π , ...)
- 2. Onset of Chiral Symmetry Restoration at High ρ_{B}
 - In-medium modification of hadrons (ρ , ω , $\phi \rightarrow e^+e^-$ or $\mu^+\mu^-$, ...)
- 3. Deconfinement Phase Transition at High ρ_B
 - Excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω , ...)
 - Excitation function and flow of charm (J/ ψ , ψ ', D, Λ_c , ...)
 - Disappearance of quark-number scaling of elliptic flow
- 4. Equation-of-State (EoS) at High ρ_B
 - Collective flow of hadrons
 - Particle production at (sub)threshold energies (Ξ , Ω , J/ ψ , D, ...)

Simulation of Collision Event

Central Au+Au collision at 25A GeV (UrQMD+GEANT4) Total ~1000 particles: 160 p + 400 π^- + 400 π^+ + 44 K⁺ + 13 K⁻

November 14-16, 2008

- 1. High-Rate Performance
 - Expected collision rate : ~10⁷ Au+Au reactions/sec
- 2. Precise Reconstruction of Displaced Vertex
 - Required resolution : ~50 μm
- 3. Particle Identification
 - Electrons and muons
 - High-p_T hadrons
- 4. Radiation Hard Detectors
- 5. Self-Triggered Readout Electronics
- 6. High Speed DAQ + Online Event Selection

Physics

Tracking Peformance with STS

- Software Tools
 - Framework FAIRroot
 - Transport codes GEANT4, FLUKA + Event generators(UrQMD, HSD, PLUTO)
 - Fast track reconstruction algorithms for online event selection
- Simulation input
 - Realistic signal and background multiplicities
 - Realistic detector layouts and responses

Hyperon Recon. with STS

Silicon tracker

Physics

- 2 hybrid pixels (750 µm each), 4 micro-strips (400 µm each)
- Strips with 50 µm pitch and 5° stereo angle
- Full event reconstruction

\sim D and Λ_c Reconstruction

- Full track reconstruction
 - 2 MAPS (150 µm thickness each) + 6 silicon micro-strips
 - Hadron identification via TOF from multigap RPCs

Vector Meson Identification

 $J/\psi \rightarrow e^+e^-$

Physics

Particle	S/B	ε(%)	σ _m (MeV)
ω	0.15	7.5	14
φ	0.13	9.1	14
ρ	0.002	4	
J/ψ	10	12	38
ψ'			

Summary

- 1. LHC detectors have excellent characteristics not only for *pp*, but also for heavy-ion collisions to investigate high-temperature QCD matter in details.
- 2. CBM detector at FAIR is presently designed for the study of high baryon density matter.
 - Our dream is to understand the phase diagram.
 - We will be very busy to realize our dream for the next two decades.

Backup Slides

Trajectories from Models

<u>UrQMD:</u> L.V. Bravina et al., Phys. Rev. C 60, 044905 (1999) <u>3-Fluid Hydro:</u> Y. Ivanov, V. Russkikh, V.Toneev, Phys. Rev. C 73, 044904 (2006)

Subthreshold D and J/ ψ

In-medium Effect of Hadrons

Calculations by H. van Hees and R. Rapp, Nucl. Phys. A 806, 339 (2008)

Electrons: access in M_{inv}< 200 MeV/c²

Muons: better statistics (trigger)

no data on p, ω , $\phi \rightarrow e^+e^- (\mu^+\mu^-)$ between 2 and 40A GeV no data on J/ ψ , $\psi' \rightarrow e^+e^- (\mu^+\mu^-)$ below 160A GeV

Ratio of Hidden and Open Charms

Charmed particle ratios (ψ /D, Λ_c /D, D/D_s, ...) are expected to be sensitive to the medium they are formed in.

Signature of QGP Formation

- Prominent signatures of the QGP formation at RHIC
- Constituent quark scaling of the elliptic flow parameter
- Suppression of high-momentum hadrons (jet quenching)

CBM will look for the disappearance of these QGP signatures.