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Introduction

aim: electron identification for momenta below 8-10 GeV/c
→ high efficiency, large acceptance, 104 combined π-suppr. with TRD

concept: gaseous RICH detector
stable, robust 
limited R&D efforts
rely to a large extend on components from industry
not too expensive

people: Pusan Natl. Univ. (I.K. Yoo et al) – gas system, RICH prototype
PNPI, St. Petersburg (V. Samsonov et al.) – mechanics
IHEP Protvino (S. Sadovsky et al.) – PMT development
HS Esslingen (M. Dürr) – mirror development/ investigations, WLS films
Wuppertal (applied for funding) – photodetector development
GSI (C. Höhne et al.) – concept, simulations, layout, coordination, 
photodetector + WLS films R&D, readout electronics
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Introduction

RICH detector – principle

• particles traversing matter with a velocity larger than the velocity of 
light in that medium (refractive index n) emit Cherenkov radiation

• opening angle of light cone
β

θ
n
1cos =
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Introduction

RICH detector – principle

particle beam
electron

photon
detector radiator

gas VUV-
mirror

target

Cherenkov
light

• light cone of cherenkov radiation is projected onto the focal plane where
the cone is imaged as rings

• focal plane at r0/2 (r0: radius of curvature of mirror)

• ring radius depends on θ
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Introduction

Cherenkov spectrum - wavelength dependence

Spectrum for nitrogen:

• number of photons per ring Nγ 
(full e-ring, r ≈ 5.4 cm)

⇒ Short wavelength photons are
important

∫= λ
λγ d

d
dNN
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Introduction

Radiator gas
• as the RICH detector should mainly serve for electron identification, the pion
threshold for emission of Cherenkov light should be sufficiently high in momentum

radiator n γth pth
π [GeV/c] λthresh

[nm]
radiation
length [m]

handling?

N2 1.000298 41 5.6 ~ 150 304

CH4 1.00044 33.6 4.7 ~ 145 650

CO2 1.00045 33.3 4.65 ~ 175 183

CF4 1.000488 32 4.47 < 120 chemically
aggressive

N2O 1.000509 31.4 4.37 (toxic)

CH3OH 
(methanol)

1.000546 30.3 4.2 flammable

C2H6 (ethane) 1.000706 26.6 3.71 ~ 160 340
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Introduction

Radiator gas - absorption edges

• N2 absorption edge ~ 150 nm

• CO2 absorption edge ~ 175 nm

N2 CO2
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Introduction

RICH detector – principle

particle beam
electron

photon
detector radiator

gas VUV-
mirror

target

Cherenkov
light



HIM Muju 22.02.09 M. Dürr

Introduction

RICH detector – mirror and coatings

protective
coating
(e.g. MgF2)

reflective
coating
(e.g. Al)

glass
substrate

• Al has a good reflectivity in the visible and UV spectrum
• protective coating is needed because of Al2O3‘s absorption edge in the UV
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Requirements

Requirements for RICH mirrors

Physical:

• high reflectivity down to ~ 160 nm

• good surface homogeneity: small error of radius 

• moderate material budget (rough number: < 2.5% X0 including mirror support, 
compare to 3 mm float glass: X0 = 2.4 %; to be investigated in detail)

Technical:

• stiffness and precision also with support structure and in support position

Economical

• moderate costs
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Options

Our approach

• minimize own R&D 

• cooperate with companies as much as possible for mirror substrates and 
coating

Recent RICH installations and used mirror technology

• HADES: first mirrors from FLABEG, Germany, coating done at TU München

• RICH1 LHCb: carbon fiber mirrors from CMA, USA, coating at SISO, France  

• RICH2 LHCb: mirrors (Pyrex) from Compas, Czech Republic, coating at CERN 
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Options

Companies possibly to cooperate with

• Flabeg, Germany (mirrors)

• Compas, Czech Republic (mirrors)

• Siso, France (coating)

1st trial: Flabeg

• can do now both mirrors and coating

⇒ test coating for reflectivity measurements 
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Flabeg Mirrors

Specs

dimensions:

Size: A = 400 x 400 mm2

glass: d = 6 mm
Radius:  r0 = 3200 mm

coating:

Al: d = 70 nm
MgF2: d = 90 nm  

photography
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Reflectivity measurements

Set up

Schematics: Apparatus at CERN – A.Braem:

D2-light 
source

VUV-
mono-
chromator

PM
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Reflectivity measurements

Results

• Very good reflectivity 
between 400 nm and 
270 nm

• First drop around 250 nm

• Second drop at about 
180 nm
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Reflectivity measurements

Results – comparison with state of the art
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• Very good reflectivity 
between 400 nm and 
270 nm

• First drop around 250 nm

• Second drop at about 
180 nm

• state-of-the-art data 
courtesy of A. Braem



HIM Muju 22.02.09 M. Dürr

Reflectivity measurements

Influence of aluminum oxide

Reason 1:

• absorption of Al2O3
formed during the 
process (absorption 
edge of bulk material at 
200 nm)

Transmission of Al2O3 bulk material
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Reflectivity measurements
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Reflectivity measurements

Influence of MgF2 layer

glass
substrate

reflective
coating

protective
coating

Reason 2: 

• interference of light reflected at Al-layer with light reflected at MgF2-surface
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Reflectivity measurements
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Coating Quality

Scanning electron microscopy

100 nm

Al

MgF2

Layer thickness:

• Al-layer: d ≅ 55 nm
• MgF2-layer: d ≅ 120 nm
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Reflectivity measurements

Influence of aluminum oxide and MgF2 layer

• good overall 
representation

• still some 
discrepancies
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• influence of surface 
roughness?
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Coating Quality

Atomic Force Microscopy

10 nm

Line scan:
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Radius of Curvature – D0

Radius of curvature – measurement set up

CCD

Point source

mirror

radius of curvature

at CERN – Carmelo D'Ambrosio
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Radius of Curvature – D0

Results

• very broad feature, 
most of the intensity 
in the background
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Radius of Curvature – D0

Results

• very broad feature, 
most of the intensity in 
the background

• pronounced  
irregularities on the cm-
scale

• possible explanations:
- rather low-cost 
fabrication process
- rather thick glass 
substrate
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Flabeg mirrors II

Different substrates

• some more substrates were delivered 

• thickness between 3 mm and 6 mm

• preliminary measurements of D0 did show 
minor improvements

• Example:

15 cm

mirror illuminated area

15 mm
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Conclusions

Reflectivity – coating 

• good reflectivity for a „first-shot“ trial 

• improvements expected from 

• higher evaporation rate
• better base pressure 

(both feasible at Flabeg)
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Radius of curvature – glass substrate

• low homogeneity of the surface on the cm-scale

• minor improvements from thinner glass and changed fabrication 
process



HIM Muju 22.02.09 M. Dürr

Options

Companies possibly to cooperate with

• Flabeg, Germany (mirrors) √

• Compas, Czech Republic (mirrors)

• Siso, France (coating)

Compas

• delivered substrates for LHCb, can do coating themselves
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Material Budget

RICH detector – material budget

• 2.9 m radiator (nitrogen) = 0.95 % X0 

• entrance/ exit window from kapton foil ≤ 0.5 % X0

• radiation length of glass 12-14 cm

• radiation length of Al 8.9 cm

• material budget of 6 mm glass = 4.6 % (e.g. 
RICH2 @ LHCb)

• typically: material budget of support ≤ 50 % of 
mirror but non-uniformly distributed

⇒ material budget of RICH detector mainly
concentrated in mirror + support

1st TRD plane
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Compas Mirrors

Specs according to simulations at  that time

dimensions:

Size: R =  300 mm
glass: d =       3 mm
Radius:  r0 = 3000 mm

coating:

Al: d = ?
MgF2: d = ?  

photography
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Radius of Curvature – D0

Results

• D0 ≅ 2 mm (90 % intensity)
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Reflectivity measurements

Results – comparison with Flabeg and state of the art
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• good reflectivity in the 
UV-region

• more data points needed 

• to be confirmed by CERN 
measurements
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Summary Compas mirrors

Results and outlook

• thickness of 3 mm and good D0 possible

• good reflectivity (to be confirmed!)

• test in Pusan’s mini-RICH?

• work on design of mirror support
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Outlook: RICH prototype PNU

mount for 4 
H8500 

MAPMTs

extension

vessel

vessel front window

mirror:
r0 = 2700 to 
3200 mm

side door

[courtesy: J.G. Yi ]
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Design

Shape of tiles
Hexagonal versus quadratic:

• impossible to divide a spherical surface  
into hexagons exactly

• approximation by irregular gaps between 
them (0.5-12mm)

different size of hexagons or large gaps 
(due to small r0)

[E. Vznuzdaev, PNPI St. Petersburg]



HIM Muju 22.02.09 M. Dürr

Design

Shape of tiles

• possible solution for CBM: approx. 30 tiles of 40 x 40 cm2 for each mirror half

[E. Vznuzdaev, PNPI St. Petersburg]
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Design

Mirror support structure

• mirror support structure depends on shape of mirror tiles 

• rectangular tiles:
typically 3 adjustable mounts
(shift along z-axis possible)

or or ...

• hexagon tiles:
one mount in center of mirror
adjustment around 2 axis
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Design

Mirror support structure

• mirror support structure depends on shape of mirror tiles 

• rectangular tiles:
typically 3 adjustable mounts
(shift along z-axis possible)

or or ...

requirements:

• no additional stress on the mirrors

• stabilization against gravity (→ distortions)



HIM Muju 22.02.09 M. Dürr

Introduction

RICH detector – principle

particle beam
electron

photon
detector radiator

gas VUV-
mirror

target

Cherenkov
light
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Photodetector

• quantum efficiency limited by transmission/absorption of window

• examples: borosilicate – UV extended – quartz

• Hamamatsu H8300-03:
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Photodetector

Performance and limitations

• PM: Photonis XP3102

• good quantum 
efficiency around 
300 nm to 400 nm

• low efficiency below 
300 nm [Data: P.Koczon]
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WLS - films

Wavelength shifting films – principle and application

• Organic molecules absorbing in the short (UV) wavelength region

• Strong fluorescence in visible region
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WLS - films

Wavelength shifting films – principle and application

• Organic molecules absorbing in the short (UV) wavelength region

• Strong fluorescence in visible region

absorption
fluorescence

Example: p-Terphenyl

http://omlc.ogi.edu/spectra/PhotochemCAD/html/p-terphenyl.html
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WLS - films

Wavelength shifting films – principle and application

• Organic molecules absorbing in the short (UV) wavelength region

• Strong fluorescence in visible region

Example: TPB = Tetraphenyl Butadiene

200 300 400 500 600

RT

77K

Wavelength [nm]
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WLS - films

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the 
short wavelength region

P-Terphenyl:

[Data: P.Koczon]

• good long-term 
stability when stored 
in CO2 (under dark)  
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WLS - films

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the 
short wavelength region

TPB:

[Data: P.Koczon]200 300 400 500 600

RT

77K

Wavelength [nm][Data: P.Koczon]
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WLS - films

Application techniques

• Evaporation (used so far): 

- good optical properties (no solvents, no binders)
- Inferior mechanical stability

PMs

Quartz crystal
microbalance

Shutter

Boat
Material

Vacuum

Heating

[Setup Andre Braem, CERN]
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WLS - films

Application techniques

• Spin coating / dip coating 

- needs solvents → possible influence on optical 
properties

- good mechanical stability

Spin coating:
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WLS - films

Application techniques

• Spin coating / dip coating 

- needs solvents → possible influence on optical 
properties

- good mechanical stability

• speed of removal 
determines thickness 
of films

• concentrations in use:
1g / L

• binder in use: 
paraloid (acrylate), 
2 g /L

Dip coating:

http://upload.wikimedia.org/wikipedia/commons/e/ed/SolGel_DipCoating1.jpg
http://upload.wikimedia.org/wikipedia/commons/e/e3/Acrylgruppe.svg
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WLS - films

Comparison evaporated films – dip-coated films

Evaporated film, 100 µg/cm2
Dip-coated film, 6 cm/min

Dip-coated film:

• scratch proof
• transparent



HIM Muju 22.02.09 M. Dürr

WLS - films

Comparison evaporated films – dip-coated films

• Evaporation leads to 
microcrystals in the 
µm-regime

⇒ scattering of visible  
light

SEM images:

2 µm1 µm
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WLS-films

Fluorescence of dip-coated films

• Fluorescence spectrum 
comparable to 
reference

• thickness dependence 
(not all photons get 
absorbed)
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Dip-coated p-terphenyl 
Excitation 280 nm
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WLS-films

To-do:

• Comparison evaporated/dip-coated films both with respect to 
fluorescence and efficiency of photomultipliers

• Test of photomultipliers 

• Test of WLS-films on multi-anode structure (maybe in mini-
RICH?)

• … and much more …
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The End

Thank you for your attention!


