Development of VUV-reflecting mirrors and wavelength shifting films for the CBM-RICH detector

Materials science for heavy ion physics

Michael Dürr Fakultät Angewandte Naturwissenschaften Hochschule Esslingen, Germany

e-mail: michael.duerr@hs-esslingen.de

aim: electron identification for momenta below 8-10 GeV/c \rightarrow high efficiency, large acceptance, 10⁴ combined π -suppr. with TRD

concept: gaseous RICH detector stable, robust limited R&D efforts rely to a large extend on components from industry not too expensive

people: Pusan Natl. Univ. (I.K. Yoo et al) – gas system, RICH prototype PNPI, St. Petersburg (V. Samsonov et al.) – mechanics IHEP Protvino (S. Sadovsky et al.) – PMT development HS Esslingen (M. Dürr) – mirror development/ investigations, WLS films Wuppertal (applied for funding) – photodetector development GSI (C. Höhne et al.) – concept, simulations, layout, coordination, photodetector + WLS films R&D, readout electronics **aim:** electron identification for momenta below 8-10 GeV/c \rightarrow high efficiency, large acceptance, 10⁴ combined π -suppr. with TRD

concept: gaseous RICH detector stable, robust limited R&D efforts rely to a large extend on components from industry not too expensive

people: Pusan Natl. Univ. (I.K. Yoo et al) – gas system, RICH prototype PNPI, St. Petersburg (V. Samsonov et al.) – mechanics IHEP Protvino (S. Sadovsky et al.) – PMT development HS Esslingen (M. Dürr) – mirror development/ investigations, WLS films Wuppertal (applied for funding) – photodetector development GSI (C. Höhne et al.) – concept, simulations, layout, coordination, photodetector + WLS films R&D, readout electronics

RICH detector – principle

- particles traversing matter with a velocity larger than the velocity of light in that medium (refractive index n) emit Cherenkov radiation
- opening angle of light cone $\cos \theta = \frac{1}{n\beta}$

Introduction

- light cone of cherenkov radiation is projected onto the focal plane where the cone is imaged as rings
- focal plane at $r_0/2$ (r_0 : radius of curvature of mirror)
- ring radius depends on $\boldsymbol{\theta}$

Cherenkov spectrum - wavelength dependence

Spectrum for nitrogen:

• number of photons per ring N_{γ} (full e-ring, r \approx 5.4 cm)

$$N_{\gamma} = \int \frac{dN}{d\lambda} d\lambda$$

⇒ Short wavelength photons are important

Radiator gas

• as the RICH detector should mainly serve for electron identification, the pion threshold for emission of Cherenkov light should be sufficiently high in momentum

radiator	n	γ _{th}	p _{th} ^π [GeV/c]	λ _{thresh}	radiation length [m]	handling?
N ₂	1.000298	41	5.6	~ 150	304	✓
L.T.	1.00044	33.6	4.7	~ ~ ~	650	8
CO ₂	1.00045	33.3	4.65	~ 175	183	✓
Gr ₄	1.000488	32	4.47	< 120		chemically aggressive
N ₂ O	1.000509	31.4	4.37			(toxic)
CH ₃ OH (methanol)	1.000546	30.3	4.2			flammable
C_2H_6 (ethane)	1.000706	26.6	3.71	~ 160	340	

Radiator gas - absorption edges

- N_2 absorption edge ~ 150 nm
- CO_2 absorption edge ~ 175 nm

RICH detector – principle

RICH detector – mirror and coatings

• Al has a good reflectivity in the visible and UV spectrum

• protective coating is needed because of Al₂O₃'s absorption edge in the UV

Requirements for RICH mirrors

Physical:

- high reflectivity down to ~ 160 nm
- good surface homogeneity: small error of radius
- moderate material budget (rough number: < 2.5% X_0 including mirror support, compare to 3 mm float glass: $X_0 = 2.4$ %; to be investigated in detail)

Technical:

• stiffness and precision also with support structure and in support position

Economical

moderate costs

Our approach

- minimize own R&D
- cooperate with companies as much as possible for mirror substrates and coating

Recent RICH installations and used mirror technology

- HADES: first mirrors from FLABEG, Germany, coating done at TU München
- RICH1 LHCb: carbon fiber mirrors from CMA, USA, coating at SISO, France
- RICH2 LHCb: mirrors (Pyrex) from Compas, Czech Republic, coating at CERN

Companies possibly to cooperate with

- Flabeg, Germany (mirrors)
- Compas, Czech Republic (mirrors)
- Siso, France (coating)

1st trial: Flabeg

- can do now both mirrors and coating
- \Rightarrow test coating for reflectivity measurements

Flabeg Mirrors

Specs

photography

dimensions:

Size: $A = 400 \times 400 \text{ mm}^2$ glass: d = 6 mmRadius: $r_0 = 3200 \text{ mm}$

coating:

AI:	d = 70 nm
MgF ₂ :	d = 90 nm

Set up

Schematics:

Apparatus at CERN – A.Braem:

Results

- Very good reflectivity between 400 nm and 270 nm
- First drop around 250 nm
- Second drop at about 180 nm

Results – comparison with state of the art

- Very good reflectivity between 400 nm and 270 nm
- First drop around 250 nm
- Second drop at about 180 nm
- state-of-the-art data courtesy of A. Braem

Influence of aluminum oxide

Transmission of Al₂O₃ bulk material

Reason 1:

 absorption of Al₂O₃ formed during the process (absorption edge of bulk material at 200 nm)

Influence of aluminum oxide

Reason 1:

 absorption of Al₂O₃ formed during the process (absorption edge of bulk material at 200 nm)

Influence of MgF₂ layer

• interference of light reflected at Al-layer with light reflected at MgF₂-surface

Influence of MgF₂ layer

• interference of light reflected at Al-layer with light reflected at MgF₂-surface

Scanning electron microscopy

Layer thickness:

• Al-layer: $d \cong 55 \text{ nm}$ • MgF₂-layer: $d \cong 120 \text{ nm}$

Influence of aluminum oxide and MgF₂ layer

- good overall representation
- still some discrepancies
- influence of surface roughness?

Atomic Force Microscopy

Line scan:

HIM Muju 22.02.09

Radius of curvature – measurement set up

at CERN - Carmelo D'Ambrosio

Radius of Curvature – D_0

Results

 very broad feature, most of the intensity in the background

Radius of Curvature – D_0

Results

- very broad feature, most of the intensity in the background
- pronounced irregularities on the cmscale
- possible explanations:
 rather low-cost fabrication process
 rather thick glass substrate

Different substrates

- some more substrates were delivered
- thickness between 3 mm and 6 mm
- preliminary measurements of D₀ did show minor improvements
- Example:

Conclusions

Reflectivity – coating

- good reflectivity for a "first-shot" trial
- improvements expected from
 - higher evaporation rate
 - better base pressure
 (both feasible at Flabeg)

Radius of curvature – glass substrate

- low homogeneity of the surface on the cm-scale
- minor improvements from thinner glass and changed fabrication process

Companies possibly to cooperate with

- Flabeg, Germany (mirrors) $\sqrt{}$
- Compas, Czech Republic (mirrors)
- Siso, France (coating)

Compas

• delivered substrates for LHCb, can do coating themselves

RICH detector – material budget

- 2.9 m radiator (nitrogen) = 0.95 % X_0
- entrance/ exit window from kapton foil $\leq 0.5 \% X_0$
- radiation length of glass 12-14 cm
- radiation length of Al 8.9 cm
- material budget of 6 mm glass = 4.6 % (e.g. RICH2 @ LHCb)
- typically: material budget of support ≤ 50 % of mirror but non-uniformly distributed

⇒ material budget of RICH detector mainly concentrated in mirror + support 1st TRD plane

Specs according to simulations at that time

photography

dimensions:

Size:	R =	300 mm
glass:	d =	3 mm
Radius:	$r_0 = 1$	3000 mm

coating:

AI:	d = ?
MgF ₂ :	d = ?

Radius of Curvature – D₀

Results

• $D_0 \cong 2 \text{ mm} (90 \% \text{ intensity})$

Results – comparison with Flabeg and state of the art

- good reflectivity in the UV-region
- more data points needed
- to be confirmed by CERN measurements

Hochschule Esslingen

University of Applied Sciences

Results and outlook

- thickness of 3 mm and good D₀ possible
- good reflectivity (to be confirmed!)
- test in Pusan's mini-RICH?
- work on design of mirror support

Hochschule Esslingen University of Applied Sciences

Outlook: RICH prototype PNU

Shape of tiles

Hexagonal versus quadratic:

- impossible to divide a spherical surface into hexagons exactly
- approximation by irregular gaps between them (0.5-12mm)
- → different size of hexagons or large gaps (due to small r_0)

[E. Vznuzdaev, PNPI St. Petersburg]

Shape of tiles

• possible solution for CBM: approx. 30 tiles of 40 x 40 cm² for each mirror half

[E. Vznuzdaev, PNPI St. Petersburg]

Mirror support structure

- mirror support structure depends on shape of mirror tiles
- hexagon tiles:
 one mount in center of mirror adjustment around 2 axis
- rectangular tiles: typically 3 adjustable mounts (shift along z-axis possible)

or

Mirror support structure

• mirror support structure depends on shape of mirror tiles

 rectangular tiles: typically 3 adjustable mounts (shift along z-axis possible)

requirements:

- no additional stress on the mirrors
- stabilization against gravity (→ distortions)

RICH detector – principle

- quantum efficiency limited by transmission/absorption of window
- examples: borosilicate UV extended quartz

UV (t=1.5mm) Transmittance [%] Borosilicate (t=1.5mm) This information is furnished for your information only. No warranty, expressed or implied, is created by furnishing this information

HAMAMATSU PHOTONICS K.K. Electron Tul

Spectral transmittance of the window

Performance and limitations

[Data: P.Koczon]

- PM: Photonis XP3102
- good quantum efficiency around 300 nm to 400 nm
- low efficiency below 300 nm

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

http://omlc.ogi.edu/spectra/PhotochemCAD/html/p-terphenyl.html

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the short wavelength region

P-Terphenyl:

 good long-term stability when stored in CO₂ (under dark)

[[]Data: P.Koczon]

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the short wavelength region

TPB:

Application techniques

- Evaporation (used so far):
 - good optical properties (no solvents, no binders)
 - Inferior mechanical stability

Application techniques

- Spin coating / dip coating
 - needs solvents → possible influence on optical properties
 - good mechanical stability

Spin coating:

Application techniques

- Spin coating / dip coating
 - needs solvents → possible influence on optical properties
 - good mechanical stability

- speed of removal determines thickness of films
- concentrations in use: 1g / L

H₂C

 binder in use: paraloid (acrylate),

2 g /L

Comparison evaporated films – dip-coated films

Dip-coated film, 6 cm/min

Evaporated film, 100 µg/cm²

Dip-coated film:

- scratch proof
- transparent

Comparison evaporated films – dip-coated films

- Evaporation leads to microcrystals in the µm-regime
- \Rightarrow scattering of visible light

SEM images:

Fluorescence of dip-coated films

- Fluorescence spectrum comparable to reference
- thickness dependence (not all photons get absorbed)

Wavelength (nm) (Excitation=29) nm, Quantum Yield=(193)

To-do:

- Comparison evaporated/dip-coated films both with respect to fluorescence and efficiency of photomultipliers
- Test of photomultipliers
- Test of WLS-films on multi-anode structure (maybe in mini-RICH?)
- ... and much more ...

Thank you for your attention!