Development of VUV-reflecting mirrors and wavelength shifting films for the CBM-RICH detector

Materials science for heavy ion physics

 $\mathcal{L}_{\mathcal{A}}$, and the set of th

Michael DürrFakultät Angewandte Naturwissenschaften Hochschule Esslingen, Germany

e-mail: michael.duerr@hs-esslingen.de

Introduction

aim: electron identification for momenta below 8-10 GeV/c \rightarrow high efficiency, large acceptance, 10⁴ combined π -suppr. with TRD

concept: gaseous RICH detector stable, robust limited R&D efforts rely to a large extend on components from industry not too expensive

people: Pusan Natl. Univ. (I.K. Yoo et al) – gas system, RICH prototype PNPI, St. Petersburg (V. Samsonov et al.) – mechanics IHEP Protvino (S. Sadovsky et al.) – PMT development HS Esslingen (M. Dürr) – mirror development/ investigations, WLS films Wuppertal (applied for funding) – photodetector development GSI (C. Höhne et al.) – concept, simulations, layout, coordination, photodetector + WLS films R&D, readout electronics

Introduction

aim: electron identification for momenta below 8-10 GeV/c \rightarrow high efficiency, large acceptance, 10⁴ combined π -suppr. with TRD

concept: gaseous RICH detector stable, robust limited R&D efforts rely to a large extend on components from industry not too expensive

people: Pusan Natl. Univ. (I.K. Yoo et al) – gas system, RICH prototype PNPI, St. Petersburg (V. Samsonov et al.) – mechanics IHEP Protvino (S. Sadovsky et al.) – PMT development HS Esslingen (M. Dürr) – mirror development/ investigations, WLS films Wuppertal (applied for funding) – photodetector development GSI (C. Höhne et al.) – concept, simulations, layout, coordination, photodetector + WLS films R&D, readout electronics

RICH detector – principle

- particles traversing matter with a velocity larger than the velocity of light in that medium (refractive index n) emit Cherenkov radiation
- opening angle of light cone β $\theta = -\frac{1}{n}$ $\cos \theta = \frac{1}{2}$

Introduction

- light cone of cherenkov radiation is projected onto the focal plane where the cone is imaged as rings
- \bullet focal plane at r $_{0}$ /2 (r $_{0}$: radius of curvature of mirror)
- $\bullet\,$ ring radius depends on θ

Cherenkov spectrum - wavelength dependence

Spectrum for nitrogen:

 $\bullet\,$ number of photons per ring ${\sf N}_\gamma$ (full e-ring, $r \approx 5.4$ cm)

$$
N_{\gamma} = \int \frac{dN}{d\lambda} d\lambda
$$

 \Rightarrow Short wavelength photons are important

Radiator gas

• as the RICH detector should mainly serve for electron identification, the pion threshold for emission of Cherenkov light should be sufficiently high in momentum

Introduction

Radiator gas - absorption edges

- \bullet N $_2$ absorption edge ~ 150 nm
- \bullet CO $_2$ absorption edge ~ 175 nm

RICH detector – principle

RICH detector – mirror and coatings

•Al has a good reflectivity in the visible and UV spectrum

 \bullet protective coating is needed because of Al $_2\text{O}_3$'s absorption edge in the UV

Requirements for RICH mirrors

Physical:

- \bullet high reflectivity down to \sim 160 nm
- good surface homogeneity: small error of radius
- \bullet moderate material budget (rough number: < 2.5% X_0 including mirror support, compare to 3 mm float glass: X_0 = 2.4 %; to be investigated in detail)

Technical:

• stiffness and precision also with support structure and in support position

Economical

• moderate costs

Our approach

- minimize own R&D
- cooperate with companies as much as possible for mirror substrates and coating

Recent RICH installations and used mirror technology

- HADES: first mirrors from FLABEG, Germany, coating done at TU München
- RICH1 LHCb: carbon fiber mirrors from CMA, USA, coating at SISO, France
- RICH2 LHCb: mirrors (Pyrex) from Compas, Czech Republic, coating at CERN

Companies possibly to cooperate with

- •Flabeg, Germany (mirrors)
- Compas, Czech Republic (mirrors)
- •Siso, France (coating)

1st trial: Flabeg

- can do now both mirrors and coating
- \Rightarrow test coating for reflectivity measurements

Flabeg Mirrors

Specs

photography

dimensions:

Size: $A = 400 \times 400 \text{ mm}^2$ glass: $d = 6$ mm Radius: $\rm\,r_{0}$ = 3200 mm

coating:

Set up

Schematics:

Apparatus at CERN – A.Braem:

Results

- Very good reflectivity between 400 nm and 270 nm
- First drop around 250 nm
- Second drop at about 180 nm

Results – comparison with state of the art

- Very good reflectivity between 400 nm and 270 nm
- First drop around 250 nm
- Second drop at about 180 nm
- • state-of-the-art data courtesy of A. Braem

Influence of aluminum oxide

Transmission of Al2O3 bulk material

Reason 1:

 \bullet absorption of Al $_2\text{\textsf{O}}_3$ formed during the process (absorption edge of bulk material at 200 nm)

Influence of aluminum oxide

Reason 1:

 \bullet absorption of Al $_2\text{\textsf{O}}_3$ formed during the process (absorption edge of bulk material at 200 nm)

Influence of MgF₂ layer

• interference of light reflected at Al-layer with light reflected at MgF_{2} -surface

Influence of MgF₂ layer

• interference of light reflected at Al-layer with light reflected at MgF_{2} -surface

Scanning electron microscopy

Layer thickness:

- •Al-layer: d [≅] 55 nm \bullet MgF $_2$ -layer: d \cong 120 nm
-

Influence of aluminum oxide and MgF₂ layer

- good overall representation
- still some discrepancies
- •influence of surface roughness?

Coating Quality

Atomic Force Microscopy

Line scan:

 X [nm]

Radius of curvature – measurement set up

at CERN – Carmelo D'Ambrosio

Radius of Curvature – $\mathsf{D}_{\textup{0}}$

Results

• very broad feature, **most of the intensity in the background**

Radius of Curvature – $\mathsf{D}_{\textup{0}}$

Results

- very broad feature, most of the intensity in the background
- pronounced irregularities on the cmscale
- possible explanations: - rather low-cost fabrication process - rather thick glass substrate

Different substrates

- some more substrates were delivered
- thickness between 3 mm and 6 mm
- \bullet preliminary measurements of D_{0} did show minor improvements
- Example:

Conclusions

Reflectivity – coating

- \bullet good reflectivity for a "first-shot" trial
- improvements expected from
	- higher evaporation rate
	- better base pressure (both feasible at Flabeg)

Radius of curvature – glass substrate

- low homogeneity of the surface on the cm-scale
- minor improvements from thinner glass and changed fabrication process

Companies possibly to cooperate with

- •Flabeg, Germany (mirrors) √
- Compas, Czech Republic (mirrors)
- •Siso, France (coating)

Compas

• delivered substrates for LHCb, can do coating themselves

RICH detector – material budget

- \bullet 2.9 m radiator (nitrogen) = 0.95 % $\mathsf{X}_0^{}$
- \bullet entrance/ exit window from kapton foil ≤ 0.5 % X_0
- radiation length of glass 12-14 cm
- radiation length of Al 8.9 cm
- material budget of 6 mm glass = 4.6 % (e.g. RICH2 @ LHCb)
- typically: material budget of support [≤] 50 % of mirror but non-uniformly distributed

 \Rightarrow material budget of RICH detector mainly concentrated in mirror + support

1st TRD plane

Specs according to simulations at that time

photography

dimensions:

coating:

Radius of Curvature – $\mathsf{D}_{\textup{0}}$

Results

• D $_0$ \cong 2 mm (90 % intensity)

Results – comparison with Flabeg and state of the art

- good reflectivity in the UV-region
- more data points needed
- to be confirmed by CERN measurements

Hochschule Esslingen University of Applied Sciences

Results and outlook

- \bullet thickness of 3 mm and good D $_0$ possible
- good reflectivity (to be confirmed!)
- test in Pusan's mini-RICH?
- work on design of mirror support

Hochschule Esslingen University of Applied Sciences

Outlook: RICH prototype PNU

Shape of tiles

Hexagonal versus quadratic:

- impossible to divide a spherical surface into hexagons exactly
- approximation by irregular gaps between them (0.5-12mm)
- \rightarrow different size of hexagons or large gaps (due to small r_0)

[E. Vznuzdaev, PNPI St. Petersburg]

Shape of tiles

 \bullet possible solution for CBM: approx. 30 tiles of 40 x 40 cm² for each mirror half

[E. Vznuzdaev, PNPI St. Petersburg]

Mirror support structure

- mirror support structure depends on shape of mirror tiles
- hexagon tiles: one mount in center of mirror adjustment around 2 axis
- rectangular tiles: typically 3 adjustable mounts (shift along z-axis possible)

or

Mirror support structure

• mirror support structure depends on shape of mirror tiles

• rectangular tiles: typically 3 adjustable mounts (shift along z-axis possible)

requirements:

- no additional stress on the mirrors
- \bullet stabilization against gravity (→ distortions)

RICH detector – principle

- quantum efficiency limited by transmission/absorption of window
- examples: borosilicate UV extended quartz

 UV (t=1.5mm) Transmittance [%] Borosilicate (t=1.5mm) This information is furnished for your information only. No warranty, expressed or implied, is created by furnishing this information **A** 1

HAMAMATSU PHOTONICS K.K. Electron Tube Division

Spectral transmittance of the window

Performance and limitations

[Data: P.Koczon]

- PM: Photonis XP3102
- good quantum efficiency around 300 nm to 400 nm
- low efficiency below 300

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

http://omlc.ogi.edu/spectra/PhotochemCAD/html/p-terphenyl.html

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the short wavelength region

P-Terphenyl:

• good long-term stability when stored in CO $_2$ (under dark) $\overline{}$

Wavelength shifting films – principle and application

• Depending on material used, improved photomultiplier performance in the short wavelength region

TPB:

Application techniques

- Evaporation (used so far):
	- good optical properties (no solvents, no binders)
	- Inferior mechanical stability

Application techniques

- Spin coating / dip coating
	- needs solvents \rightarrow possible influence on optical properties
	- good mechanical stability

Spin coating:

Application techniques

- Spin coating / dip coating
	- needs solvents \rightarrow possible influence on optical properties
	- good mechanical stability

- [speed of removal](http://upload.wikimedia.org/wikipedia/commons/e/ed/SolGel_DipCoating1.jpg) determines thickness of films
- concentrations in use: 1g / L
- binder in use: paraloid (acrylate),

2 g /L

Comparison evaporated films – dip-coated films

Dip-coated film:

- scratch proof
- transparent

Comparison evaporated films – dip-coated films

- • Evaporation leads to microcrystals in the µm-regime
- \Rightarrow scattering of visible light

SEM images:

Fluorescence of dip-coated films

- Fluorescence spectrum comparable to reference
- thickness dependence (not all photons get absorbed)

Mavelength (nm) (Excitation=29) nm, Quantum Yield=0.93)

To-do:

- Comparison evaporated/dip-coated films both with respect to fluorescence and efficiency of photomultipliers
- Test of photomultipliers
- Test of WLS-films on multi-anode structure (maybe in mini-RICH?)
- •… and much more …

Thank you for your attention!