

Light Fragment Production in Central Heavy Ion Collisions and the FOPI ToF Upgrade Project

Min Sang Ryu

Korea University

Introduction

- Ru+Ru at 0.4 and 1.528 AGeV
 - Invariant spectra and Rapidity distribution
 - Radial flow and Temperature
 - Scaled elliptic flow
- FOPI Time-of-Flight (ToF) Upgrade
- Summary and Outlook

Nucl. Phys. (Proc. Suppl.) B 44 708(1995) J. Ritman *et al*.

CDC & Helitron

- drift chamber

BARREL & Plastic Wall

- plastic scintillation detector

Magnet intensity : 0.6 T

S183 experiment in 1996

⁹⁶₄₄Ru+⁹⁶₄₄Ru collision at 0.4 and 1.528 AGeV

Introduction

- Study the production and collective flow of the light fragments (p, d, t, ³He, and ⁴He)
 - For the most central events
 - Rapidity distribution and production
 - Radial flow and Temperature
 - Maximum elliptic flow at 0.4 AGeV
 - For semi-central events
 - Scaled elliptic flow (v₂/n) by the nun the composite nucleons, n, as func⁻

scaled transverse momentum (p_t/n)

Nucleon coalescence scenario in heavy-ion collisions

Phys. Rep. 131 223 (1986) L. Csernai and J. Kapusta

Phase space distribution

91.4

98.7

Q_{tot}/Q_{svs}(88) (%)

d

1.5 1

Y.J.Kim

(E_{rat})

116 (E_{rat} A)

 31.2 ± 2.8

 17.2 ± 1.9

The yield at mid-rapidity is taken by the 2nd order of polynomial function.

comparison

	M.S.Ryu (tmul)	W.Reisdorf (E _{rat})	Y.J.Kim (E _{rat})
b ₀ (b _{max} =10.531fm)	0.165	0.15	
σ (mb)	95		67
pi-	244	15.63 ± 0.78	15.4 ± 1.7
pi+	-3.14	12.49±1.00	13.0 ± 1.4
p	62.12±2.71	64.5±3.2	69.6 ± 5.5
d	16.06±1.37	18.4±1.1	19.2 ± 2.3
t	3.02±0.54	4.1±0.4	
³ He	2.22±0.54	2.65±0.24	
⁴ He	0.46±0.21	0.67±0.06	
Q _{tot}	83.42	90.52	
Q _{tot} /Q _{sys} (88) (%)	94.8	102.9	

1.528 AGeV

 $<\beta_r>$ and T at mid-

rapidity

NP A586 755(1995) G. Poggi et al., FOPI.

$$\left\langle E_{kin}\right\rangle \approx \frac{1}{2}m_0\left\langle \beta_r^2\right\rangle A + \frac{3}{2}T$$

In order to get $\langle E_{kin} \rangle$ at mid-rapidity, fitted $\langle E_{kin} \rangle$ vs. y(0) by 4th order of polynomial function.

E₀ : thermal energy E_F : flow energy		
RuRu15	M.S. Ryu (tmul)	W. Reisdorf (Erat)
b ₀ (b _{max} =10.53 1fm)	0.165	0.15
σ (mb)	95	
E ₀ (MeV)	147.1 (-15.7, +7.9)	188 ±20
E _F (MeV)	57.8 (-7.7, +17.4)	52.8±10.5
β _F	0.351 (-0.056, +0.024)	0.337±0.032
T (MeV)	98.1 (-5.3, 10.5)	111±14

Comparison

PR C 57 244 (1998) B. Hong et al., FOPI

 $\left\langle E_{kin}\right\rangle \approx \frac{1}{2}m_0\left\langle \beta_r^2\right\rangle A + \frac{3}{2}T$

		2 0 (1 / 2	
	RuRu04	M.S. Ryu (tmul)	W. Reisdorf (Erat)
	b ₀ (b _{max} =10.53 1fm)	0.171	0.25
	σ (mb)	102	
	E ₀ (MeV)	78.42 (-6.16, +6.32)	96.3 ± 9.6
	E _F (MeV)	27.57 (-6.01, +7.29)	22.0 ± 4.9
ĺ	β _F	0.242 (-0.034, +0.026)	0.217 ± 0.023
ĺ	T (MeV)	52.28 (-4.21,+4.11)	59.8 ± 6.4

E_0 : thermal energy E_F :

E_F: flow energy

RuRu15	M.S. Ryu (tmul)	W. Reisdorf (Erat)
b ₀ (b _{max} =10.53 1fm)	0.165	0.25
σ (mb)	95	
E ₀ (MeV)	147.1 (-15.7, +7.9)	188±20
E _F (MeV)	57.8 (-7.7, +17.4)	52.8±10.5
β _F	0.351 (-0.056, +0.024)	0.337±0.032
T (MeV)	98.1 (-5.3, 10.5)	111±14

Azimuthal particle distribution & Reaction plane

• nucl-ex/9711003 (1997) J.Y. Ollitrault

Transverse momentum method

$$\overrightarrow{Q^{i}} = \begin{pmatrix} Q^{i} \cos \phi_{RP} \\ Q^{i} \sin \phi_{RP} \end{pmatrix} = \sum_{k=1}^{N} w_{k} \cdot \begin{vmatrix} \overrightarrow{p}_{t} \\ p_{t} \end{vmatrix} \cdot \begin{pmatrix} \cos \phi_{k} \\ \sin \phi_{k} \end{pmatrix}$$

where
$$\begin{cases} w_{k} = -1 & \text{for } y^{(0)} \le -0.2 \\ w_{k} = +1 & \text{for } y^{(0)} \ge +0.2 \end{cases}$$

• Nucl. Phys. A638 195(1998) J.Y. Ollitrault

• Phys. Lett. B157 (1985) 146 P. Danielewicz and G. Odyniec

Resolution of reaction plane

 ψ : measured azimuthal angle

 $\langle \cos n\psi \rangle = \langle \cos n\phi \rangle \langle \cos n\Delta\phi \rangle$

 $\langle \cos \psi$

 Φ : true azimuthal angle

nucl-ex/9711003 (1997) J.Y. Ollitrault Divide randomly each event into two subevents containing half of the particles, and construct vectors(Q_1 , Q_2) of total transverse momenta of the two sub-events.

$$\Delta \phi_{RP} \equiv \left| \Delta \phi_1 - \Delta \phi_2 \right|$$

 $v_1 = \langle \cos \phi \rangle =$

$$v_2 = \langle \cos 2\phi \rangle = \frac{\langle \cos 2\psi \rangle}{\langle \cos 2\Delta\phi \rangle}$$

RuRu04 $\langle \cos 2\Delta \phi \rangle = 0.384$

RuRu15 $\langle \cos 2\Delta \phi \rangle = 0.292$

Scaled elliptic flow

20

FOPI ToF Upgrade

Motivation ©

Nucl. Phys. A 625 325(1997) J. Schaffner-Bielich et al.		
For free NN collisic	ons,	
K^+ : NN -> $K^+\Lambda N$:E _{thr} ~1.58 GeV	
K⁻∶ NN -> K+K-NN	:E _{thr} ~2.5 GeV	

Sideward flow of K⁺ in Ni+Ni at 1.93A GeV Phys. Lett. B 486 6 (2000) P. Crochet et al.

Upgrade of Time-of-Flight

Plastic barrel	New MMRPC barrel
180 scintillators for 30 sectors $39^{\circ} \le \theta_{lab} \le 130^{\circ} \Rightarrow 67^{\circ} \le \theta_{lab} \le 140^{\circ}$	140 MMRPCs for 28 supermodules $37^{\circ} \le \theta_{lab} \le 68^{\circ}$
$\sigma_t \leq 200 \mathrm{ps}$	$\sigma_t \leq 100 \mathrm{ps}$
$p_{lab} \leq 0.5 \mathrm{GeV}$	$p_{lab} \leq 1 \mathrm{GeV}$

Multi-strip Multi-gap RPC (MMRPC)

90 x 4.6 cm² 1.1 & 0.5 mm (10 plates) 8 x 220 µm (fishing line) 16 (1.94/0.6 mm)

Applied voltage 9.6 kV (110kV/cm) $C_2F_4H_2/iso-C_4H_{10}/SF_6=80/5/15$ Avalanche mode

TOF-barrel:

→ 4480

Installation

28 SMs (140 MMRPCs)

Multi-strip-MRPC (MMRPC)

FEE5, QDC, and Tacquila3

	FFF5 /
-0	

Ch.Nr. : 16 channels
Bias : +5.4V, -5V
Power: 0.51 W/ch.
Dim : 149 mm * 95 mm
OUT. : 16 diff. PECL for time
16 diff. for amplitude
1 diff. PECL OR
GAIN. :~170
BW :~1.5GHz

V V V	:~1.5GHZ
loise	:~25µV
-	:~250ps

σ_{t(FEE)} :<20 [ps] @(5mV)

One SM needs 10 systems. Full system electronic resolution < 25 ps

Mounting and Test Feb. ~ Aug. in 2007

Supermodule^{*}

Electronics for start counter

GSI Scientific Report 2008, T. I. Kang and N. Herrmann

Experiments with new ToF

• K⁺ and K⁻ production and interaction in dense baryonic matter

- Ni+Ni collisions at 1.9 AGeV in Sep. 2007.
- Ni+Ni collisions at 1.9 AGeV in Mar. 2008.
- Ni+Pb collisions at 1.9 AGeV in Jan./Feb. 2009.
- Ru+Ru collisions at 1.69 AGeV in Feb./Mar. 2009.

Nucl. Phys. A 625 325(1997)

J. Schaffner-Bielich et al.

- Kaonic nuclear cluster (p+p \rightarrow K⁺ + K⁻pp \rightarrow K⁺ + p + \wedge)
 - Proton beam at 3 GeV in this summer.

Phys. Rev. C 65 044005 (2002) Y. Akaishi and T. Yamazaki

- In-medium effect (π -p \rightarrow K⁰ Λ)
 - Pion beam at 1.15 GeV in 2010.

Phys. Rev. C 62 069904 (2000) K. Tsushima, A. Sibirtsev, A. W. Thomas

Summary and Outlook

• Ru+Ru at 0.4 and 1.528 AGeV

- \circ dN/dy, yield, β_r , and T for the most central events.
- Nucleon coalescence signature in scaled differential elliptic flow ($v_2/n vs. p_t/n$) for the semi-central events

• FOPI ToF Upgrade

- 28 SMs consists of 140 MMRPCs and 4480 channels.
- 98% efficiency and less 100 ps time resolution at 110 kV/cm.
- New ToF have operated successfully during last three Ni beam times.

• Outlook

 Comparison to results from the Iso-spin Quantum Molecular Dynamics (IQMD)