# Challenges with KoRIA

Seonho Choi Seoul National University

Feb. 23, 2009

Wednesday, February 25, 2009

## Science with RI beam

- Nuclear Structure
  - Super Heavy Elements (SHE)
- Nuclear Astrophysics
- Fundamental Symmetries
- Other Scientific Applications

## Chart of Nuclides



## Nuclear Structure

- Neutron Rich Nuclei
- Neutron Skins
- Shells and Shapes
- Neutron Halo
- Drip Lines (neutron/proton side)

## Nuclear Astrophysics

- The Origin of heavy elements
- Neutron Stars
- Explosive Nucleosynthesis
  - Supernova, GRB etc.

# Other Applications

- Fundamental Symmetries
  - EDM measurement with RI's
- Medical Applications
- Material Science
  - beta-NMR

## Comparison of Future RI Facilities

|                   | RIA                                                                                                                                                                                                          | FRIB        | RIBF          | FAIR                                                                                                                                                                        | SPIRAL2                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Energy<br>(MeV/A) | 400                                                                                                                                                                                                          | 200         | 350           | 2000                                                                                                                                                                        | 14.5                        |
| Power (kW)        | 400                                                                                                                                                                                                          | 400         | 100           | 100                                                                                                                                                                         | 200                         |
| Main Acc          | SC Linac                                                                                                                                                                                                     | SC Linac    | SC Cyclotron  | Synchrotron                                                                                                                                                                 | SC Linac                    |
| Characteristics   | <ol> <li>Projectile<br/>Fragmentation</li> <li>Projectile/<br/>Target fission</li> <li>Target<br/>fragmentation/<br/>spallation</li> <li>ISOL</li> <li>Fast beam<br/>fragmentation<br/>separation</li> </ol> | SAME as RIA | Fragmentation | <ol> <li>Fragmentation</li> <li>e-RI scattering</li> <li>Fixed target<br/>RHI collision</li> <li>Anti-proton</li> <li>Plasma Physics</li> <li>Atomic<br/>Physics</li> </ol> | I. Fragmentation<br>2. ISOL |

## **RIBF at RIKEN**







#### New isotope search using a <sup>238</sup>U beam at BigRIPS

Nov. 2008

Setting 1) <sup>238</sup>U<sup>86+</sup> 345 MeV/u + Be, Bρ01 = 7.9015 Tm, with an F1 degrader, targeting Z=30 region.
Setting 2) <sup>238</sup>U<sup>86+</sup> 345 MeV/u + Be, Bρ01 = 7.931 Tm, with an F1 degrader, targeting Z=40 region.
Setting 3) <sup>238</sup>U<sup>86+</sup> 345 MeV/u + Pb (with Al backing), Bρ01 = 7.706 Tm, with F1 and F5 degraders, targeting Z=50 region.





## Tasks for KoRIA

- Define **unique** physics goals
  - Not an easy task. Easier said than done.
- Design unique **World Class** facility
- Build the machine in time
- Daunting task for nuclear physics community for the next 10 to 15 years