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1. Motivation

• Charm-strange scalar meson Ds0
+(2317) was 

discovered in 2003

• Its mass is too lower than the expected values in 
quark models and other theoretical predictions.

• It has been interpreted as the isosinglet state 
(conventional scalar meson), a four-quark state, a 
mixed state of both, a DK molecule, …

• Later charm scalar meson D0*(2400) with broad 
width was discovered in 2004

• Its mass is similar to or larger than that of 
D+

s0(2317), even though Ds(0
-) is 100 MeV higher 

than D(0-).



2. QCD sum rule

1. OPE (operator product expansion)

2. Phenomenological side

3. Dispersion relation

4. Borel transformation



2. 1. OPE (operator product expansion)
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Perturbative quark propagator in a weak gluonic background field
(The gluons are supposed to emerge from the ground state)
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Perturbative part
I : dimension 0 

Gluon condensates
<G2> : dimension 4

and more condensates
with higher dimension
or more strong couplings
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y graphicall is )1(

Quark condensate
<qq> : dimension 3 

Quark-gluon mixed condensates
<qGq> : dimension 5

and more condensates
with higher dimension
or more strong couplings



OPE up to dimension 5 in vacuum

, where C0 (q2) is perturbative part



OPE up to dimension 5 
in nuclear matter

 where

at meson scalar  gconsiderin and
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List of employed condensate parameters



2.2. Phenomenological side
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2.3. Dispersion relation
(in vacuum)

L.H.S .is a function of QCD parameters 

such as g, mq, <qq>, <G2>…, obtained 

from OPE.

R.H.S. is a function of physical 

parameters such as mλ and s0



Dispersion relation 
(in nuclear matter)



2.4. Borel transformation
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3. Application to scalar D mesons

1. Charm scalar meson D0* in vacuum 

2. Charm scalar meson D0* in nuclear matter

3. Charm-strange scalar meson Ds0 in vacuum & 
in nuclear matter



3.1. Charm scalar meson D0* 
in vacuum

From the dispersion relation

,

the mass of scalar D meson is  
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Borel window
The range of M2 satisfying below two conditions

1) continuum/total < 0.3

/            < 0.3

2) Power correction/total < 0.3

/          <0.3 



Borel curve for D0*(2400) in vacuum

(adjust s0 to obtain flattest curve 

within Borel window)
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3.2. Charm scalar meson D0* 
in nuclear matter

• Two dispersion relations for πe and πo exist

• ≡f(s0
+,s0

-)

• ≡g(s0
+,s0

-)
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0 7.7 2.392

1 7.55 2.373

2 7.8 2.391

3 7.5 2.371

4 7.8 2.391



Mass shift of D0*
±(2400) in nuclear matter 

(The conditions for Borel window are 
continuum/total<0.5 & power correction/total <0.5)
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Physical interpretation of the result
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3.3. Charm-strange scalar meson Ds0

in vacuum & in nuclear matter
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Borel curves for Ds0 (2317) in vacuum
(The conditions for Borel window are 

continuum/total<0.5 & power correction/total <0.5)
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Mass shift of Ds0
±(2317) in nuclear matter 

(The conditions for Borel window are 
continuum/total<0.5 & power correction/total <0.5)
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4. Conclusion
1. We successfully reproduced the mass of charm scalar meson D0* 

in vacuum and that of charm-strange scalar meson Ds0 by using 
QCD sum rule

2. Based on this success, their mass shifts in the nuclear matter are 
estimated by considering the change of condensate parameters 
and adding new condensate parameters which do not exist in 
vacuum state.

3. The mass of D0*
+ decreases in the nuclear matter more than that 

of D0*
-, as naively expected.

4. But the mass of Ds0
+ increases a little in the nuclear matter, while 

that of Ds0
- decreases.

5. The quark component of these scalar particles are still in question, 
whether they are conventional mesons or quark-quark states or 
their combinations or others.

6. We expect that the behavior of their masses in nuclear matter 
serves to determine the exact quark component of those scalar 
particles.



4.1. Future work

• QCD sum rule for pseudoscalar D meson, 
which is the chiral partner of charm scalar 
meson – the mass difference between scalar 
and pseudoscalar meson is expected to 
decrease in nuclear matter due to the partial 
restoration of chiral symmetry.

• QCD sum rule for charm scalar meson as four 
quark state – The comparison of its mass shift 
in nuclear matter with that of conventional 
meson will reveal the exact component of 
charm scalar meson.


