

C. Kim,* B. Hong, R. J. Hu, M. Jo, K. S. Lee, S. Park, and K. S. Sim Department of Physics and Korea Detector Laboratory, Korea University, Seoul 136-701

HIM 2009 spring

Contents

1. Motivation

2. Detector Characteristics

- a. Scintillation fiber
- b. Si-photodiode array and Electronics
- c. Protection system
- d. Control device for scan operations
- 3. Test
 - a. Calibration by X-ray
 - b. Neutron-beam profile measurement at KIRAMS
- 4. Beam-profile images in absorbed dose rates
- 5. Detector modification
- 6. Conclusions and Prospects

1. Motivation

- 1) High LET (linear energy transfer) radiations:
 - Fast neutrons, protons, heavy-ions...
 - significantly large energy deposit in tissue per unit length
- Fast-neutron radiotherapy:
 Very effective treatment for soft-tissue cancer
- 3) Necessity of precise neutron beam-profile measurement device
- We designed, built, and tested scintillation fiber detector based on a current-mode electronics.

2/19 2. Detector characteristics - a. Scintillation fiber

46.2 mm × 3.0 mm (46 × 3 pieces) 9.0 mm

1.

2.

a. b. c.

d.

3.

4.

5.

6.

a. b.

Saint-Gobain Crystals Plastic Scintillating Fibers Specific Properties of Standard Formulations

Fiber	Em	ission Em olor Pea	iission [ak, nm Ti	Decay 1, me, ns	/e Length m*	# of Photons per MeV**	Characteristics/ Applications
BCF-1	LO È	blue	432	2.7	2.2	~8000	General purpose; optimized for diameters>250µm
BCF-1	12 t	blue	435	3.2	2.7	~8000	Improved trans- mission for use in long lengths
BCF-2	20 g	reen	492	2.7	>3.5	~8000	Fast green scintillator
BCF-6	50 g	reen	530	7	>3.5	~7100	3HF formulation for increased hardness
BCF-9	91A g	reen	494	12	>3.5	n/a	Shifts blue to green
BCF-9	92 g	reen	492	2.7	>3.5	n/a	Fast blue to green shifter
BCF-9	98	n/a	n/a	n/a	n/a	n/a	Clear waveguide

* For 1mm diameter fiber; measured with a bialkali cathode PMT

** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

- 1) Line scan detector with 46×3 pixels
- 2) Single-clad scintillation fiber (Bicron BCF-60)
- 3) 9 mm fiber length:

11.8 mm

- Compromised between neutron sensitivity enhancement & multiple scattering probability suppression
- 4) Three-layer structure for maximized light yield produced by the scattered protons

- 1) 46 channel Si-photodiode (Hamamatsu S4111-46Q)
 - Dark current: ~ $10 \ pA$

1.

2.

a.

b.

c. d.

3.

b.

4.

5.

- 2) Current-integration-mode electronics
 - Designed for high-intensity fast neutron-beams
 - (neutron beams for typical radiotherapies, $10^8 \thicksim 10^{10} \mbox{ Hz/cm}^2$)

4/19 2. Detector characteristics - b. Si-photodiode array and Electronics

Specifications

Package	Ceramic			
Active Area	45.9 × 4.4 mm			
Number of Elements	46			
Spectral Response Range	190 to1100 nm			
Peak Wavelength	960 nm			
Photo Sensitivity at peak	0.58 A/W			
Dark Current Max.	0.01 nA			
Rise Time	1.2 us			
Terminal Capacitance	550 pF			
Note				
Measurement Condition	Typ. Ta=25 deg. C, unless otherwise noted			

Dimensional/Characteristic Chart

Spectral Response

6.

- 1) Output pulses fed into preamp (preamp sensitivity: $10^{-10} \sim 10^{-2}$ A)
- 2) Preamp converts output pulses to voltage-sensitive pulses
- 3) Preamp outputs are multiplexed to four ADCs

3.

b.

4.

5.

- 4) ADCs convert the voltage-sensitive analog inputs into 12-bit digital signals (in every $7.8 \ \mu s$) and feed them to a digital processor
- 5) Input signals transferred from the ADCs are summed over $1\ ms$ and fed into a data buffer area
- 6) Data from digital processor are transferred to PC by MCU via Ethernet link

6/19 2. Detector characteristics - c. Protection system

1.

2.

a.

b.

C. d.

3.

a.

b.

4.

5.

- 1) Two-step collimation for the fast neutrons
 - Collimators made of natural Gd₂O₃ powder and epoxy
 - Slit width of V-shape collimator: 1 mm
- 2) Gd layers for fast/thermal neutron shielding

7/19 2. Detector characteristics - d. Control device for scan operations

1) Transverse movement (red line):

1.

2.

а. b. c.

d.

3. а. b.

4.

5.

- continuous with adjustable speed (1~5 cm/s)
- 2) Vertical movement (yellow line): 46 mm per step
- 3) Total possible scan area: $30 \times 32 \text{ cm}^2$

8/19 **3. Test** - a. Calibration by X-ray

1.

2.

a.

b.

с.

d.

3.

a. b.

4.

5.

6.

- 1) Calibration test for the sensitivity of each channel
- 2) Test was performed by the X-ray generator (8 mA, 70 kV)
 - The portable X-ray gun was placed at three different distances (8, 10, and 16 cm) from the detector

3) Results:

- Sensitivity varies at the level of a few %
- Channel responses were measured precisely.
- Calibration factors were obtained for the channel responses.

- 1) Fast-neutron beam was provided by MC50 cyclotron at KIRAMS
- 2) Distance from Be target to the scan detector: 123 cm
- 3) Incident proton energy: 45 MeV
- 4) Be target thickness: 10.5 mm

1.

2.

3.

4.

5.

6.

а. **b.**

a. b. c. d.

5) Test was performed with two beam currents: $10 \ \mu A$ and $20 \ \mu A$

Measured beam profiles at KIRAMS (left) and Unfolded neutron flounce spectrum (lethargy spectrum) measured by Boner sphere system (KAERI/RR-2442/2003) (right)

Beam-profile measurement conditions:

1.

2.

а.

b.

с.

d.

3.

a.

b.

4.

5.

- Corresponding mean charge value to neutron beam intensities:
 - ~ 4.0 pC \leftrightarrow ~ 4.8 \times $10^7~Hz/cm^2$ (20 μA beam current)
 - ~ 1.8 pC \leftrightarrow ~ 2.4 \times $10^7~Hz/cm^2$ (10 μA beam current)
- Test performed under the beam intensities lower than operational intensity $(10^8 \sim 10^{10} \text{ Hz/cm}^2)$

4. Beam-profile images in absorbed dose rates 13/19

- 1) Beam-profile image (charge distribution)
 - Detector signal is roughly proportional to the deposited energy in the detector
 - Beam-profile images \approx distribution of expose dose rate induced in the detector

2) Conversion by using Geant4 simulations

$$\left(\frac{dD}{dt}\right)_{avg} = \frac{A_p}{m} \frac{dE_{dep}}{dtdA} = \frac{A_p}{m} \times i_p \times 1.602 \times 10^{-13} \sum \epsilon_i (\delta E_i) \left(E_i \frac{\Delta \Phi_i}{\Delta E_i}\right) \Delta (\log E_i) \quad \text{(Gy s-1)}$$

where,

- $A_{\rm n}$: area of each image pixel (cm²)
- $i_{\rm n}$: proton beam current (nA)
- E_i : neutron energy (MeV)
- $E_i \Delta \Phi_i / \Delta E_i$: differential neutron flux (n/s/nA)
- δE_i : energy deposited in the detector (GEANT4)
- ϵ_i : interaction sensitivity (GEANT4)
- $Q_{\rm m}$: mean charge induced in the beam area
- \rightarrow The conversion factor $C_f = \frac{\left(\frac{dD}{dt}\right)_{avg}}{O}$ (Gy h⁻¹ C¹)
- \therefore Distribution of the beam profile in Gy : $\frac{dD(x,y)}{dt} = C_f \times q(x,y)$ (Gy h⁻¹)

Neutron spectrum measured at 1.5 m (n/s/nA) (KAERI/RR-2442/2003)

d.

3.

a.

b.

4.

5.

14/19 4. Beam-profile images in absorbed dose rates

- 3) Applying to human-body:
 - Proton beam status: 45 MeV, 20 μA
 - Be target thickness: 10.5 mm
 - Distance: 123 cm

1.

2.

a. b.

с.

d.

3.

a.

b.

4.

5.

- Beam area : $8 \times 8 \text{ cm}^2$
- Human body phantom : $30 \times 30 \times 20$ (depth) cm³
- Size of a voxel : 1 cm³

15/19 4. Beam-profile images in absorbed dose rates

250

300

1 Chan = 1 mm

200

150

-1

100

50

200

1 bin = 1.2 mm

250

150

1. 2.

> a. b.

с.

d.

3. а. b.

4.

5.

6.

-1

ò

50

100

16/19 5. Detector modification

- 1) Bended structure to avoid direct beam-exposure
- 2) Improvement in statistics: $\{(10^8 \rightarrow 10^7) \sim 10^{10}\}$ (Hz/cm²)
 - Increased fiber length (9 mm \rightarrow \sim 20 mm)
 - Collimator slit removed (open width: $1 \text{ mm} \rightarrow 2 \text{ mm}$)
 - * movement speed will also be adjusted

5.

6.

1.

2.

a.

b.

c. d.

3.

a.

b.

17/19 5. Detector modification

2. a. b.

с.

d.

1.

Conclusions

- 1) Fast-neutron beam profile was successfully measured.
- 2) The detector composed of scintillation fiber and currentintegration mode electronics was proved as a reliable instrument for the beam-profile measurement.
- 3) High-precision data measurement:
 not only beam area but also beam-halo were observed.
- 4) Stable beam-profile measurement is possible
- 5) Direct result (charge distribution) can be converted to absorbed dose rates by Geant4 simulation

Prospects

- 1) Second neutron-beam test arranged at KIRAMS: March 16
- 2) Further, and deeper simulations by Geant4 are required for precise absorbed/equivalent dose rates calculation

Thank you!

Backup Slides - Signal produce

- 1) Elastic scatterings
 - n-p elastic scattering: deposited energy by recoiled proton (dominant)
 - II. n-¹²C elastic scattering: deposited energy by recoiled ¹²C
 - III. Neutron signal is proportional to deposited energy
 - IV. The beam-profile images directly reflects the distribution of absorbed doses
- 2) Inelastic scatterings
 - i. $p(n, \gamma)d \rightarrow signals by secondary deuteron$
 - II. $n + {}^{12}C \rightarrow 3 \alpha's$

Backup Slides - Gadolinium

	동위원소 질량비	내부전환에 의해 발생하는 전자의 에너지		
질량수	존재비 (%)	Energy (KeV)	내부전환 확률 (%)	
152	0.2	29	9.82	
154	2.2	39	4.19	
155	14.8	71	26.80	
156	20.5	78	6.17	
157	15.7	81	4.97	
158	24.8	88	1.16	
160	21.8	131	3.41	
	여백	150 이상	~2	

Backup Slides – Detector arm

Backup Slides – (tagging efficiency × deposited energy) / neutron

Backup Slides – Counts of secondary particles / neutron

Backup Slides - Position sensitivity test

Schematic diagram of position sensitivity test. The width of γ -ray pass (open space between lead bricks) adjusted to overcome low irradiation rate of γ -source.

- 4 points (by 1 cm interval) of detector checked to examine position-sensitivity of detector.
- γ-ray distribution of each points were all uniform.

Backup Slides - LED Test

Photoelectrons

- Amounts of photon correspondent to LED power measured by PMT
- Same experiment repeated by designed electronics