Study of plastic scintillators for fast neutron measurements

Mihee Jo*, B. Hong, R. J. Hu, C. Kim, K. S. Lee Nuclear Physics Laboratory Korea University

Contents

- 1. Introduction & motivation
- 2. Experimental setup
- 3. Pulse analysis
- 4. GEANT4 simulation
- 5. Potential application to the neutron camera
- 6. Conclusions

Introduction & motivation

- Fast neutrons are applied for the treatment of the human cancers, material science and biology.
	- Neutrons have a higher biological effectiveness than both photons and protons.
	- Neutrons are especially effective against advanced tumors like head, neck and prostate cancer.

Introduction & motivation

Neutron radiography is used to find out slight defect in materials.

Introduction & motivation

- Fast neutron proton elastic scattering can be applied to reconstruction of the neutron tracks emitted from sources.
- Elastic scattering produces an energetic proton, which can be measured by proton-rich organic scintillators.
- It will be important to diagnose the characteristics of the plastic scintillators for the measurement of fast neutrons.

- A 5µCi²⁵²Cf was used for the energy measurements.
	- Branching ratio for fission $= 0.0309$
	- Branching ratio for $α$ -decays = 0.969
- The fission decay was triggered by either neutron or γ-ray emitted from the fission fragments.

- Case Ⅰ
	- 2 scintillators were used for full absorption.
	- Neutron events were triggered by trigger scintillator & primary scintillator.

• Case II

- 4 layered scintillator with 1-cm-thick plate were used for high efficiency and resolution.
- Because of small detectable range, no collimator in front of the 4 layered scintillators.

TDC

Common

Start

Stop

ADC

Gate

Chan. 1

Chan. 2

• Neutron energy measured by the TOF

- L=Distance between the source and the neutron detector
- $T_s=$ Conversion factor of TDC (0.2651 ns/ch)
- T_0 =Time offset
- Uncertainties for the neutron energy measurement

Delay

Delay

Gate & delay **generator**

Delay

Discriminator

 (20 mV)

Delay

Trigger

scintillator

Primary

scintillator

Secondary

scintillator

Discriminator

 (30 mV)

Fan

IN/OUT

- 1. Uncertainty of the flight distance caused by the finite thickness of the detectors.
- 2. Uncertainty of the flight-time caused by finite time resolution of the test system.

- Selection of the neutron energy : $2 < E_n < 7.5$ MeV
	- E_n > 7.5 MeV : the contamination of the gamma rays emitted from α and fission decays.
	- E_n < 2 MeV : excluded to minimize the perversion in the neutron-energy spectra due to the threshold on the pulse height (30 mV).

Pulse analysis

Pulse spectra of the fast neutrons (Case Ⅰ)

- Energy distribution of primary detector
	- Energy is deposited partially.
- Energy distribution of secondary detector
	- The rest energy is fully absorbed.
- Total energy distribution
	- At higher neutron energies, energy resolution is worse, and distribution is broader.

500

 2 ± 0.05 MeV

D₁

D₂

 500 F

 200

 3 ± 0.075 MeV

D₁

 $D2$

Pulse analysis

Neutron energy dependence of total light output (Case Ⅰ)

• Birk's formula

$$
\frac{dL}{dx} = \frac{A\frac{dE}{dx}}{1 + kB\frac{dE}{dx}} = \frac{A\frac{dE}{dx}}{1 + B\frac{dE}{dx} + C\left(\frac{dE}{dx}\right)^2}
$$

- dL/dx : (light output) / (unit length)
- A : absolute scintillation efficiency
- kB, B : parameter relating the density of ionization centers to dE/dx

• Approximately linear, but small amount of non-linearity exist.

Pulse analysis

Energy resolution of the D1 (Case Ⅰ)

- At higher neutron energies, poorer resolutions occur.
	- The number of fully absorbed neutron decreases.
	- 0.7 – Light collection efficiency decreases as 0.6 $+ + + + + +$ 0.5 multiple scattering increases. $\overleftrightarrow{\mathbf{6}}^{0.4}_{0.3}$ Any other reasons? 0.2 0.1

 $\overline{0}$ Ω

 $\mathbf{1}$

 \mathcal{D}

Energy (MeV)

• Probably, other scattering processes affect the light yield.

 7

8

GEANT4 simulation

Sensitivities was predicted as a function of the neutron energy

• At higher neutron energies, n-¹²C scattering occurs more frequently.

- Total light yield can be reduced because the kB value for n-¹²C scattering is lager than n-p scattering.
	- \rightarrow Poorer resolutions!

GEANT4 simulation

Deposit energies of the fast neutrons and the comparisons to the pulse spectra

- Simulation's peak becomes narrower in data
- Origin of discrepancies between the data and the simulations
	- Difference in the light yields between p and ¹²C.
	- The difference becomes larger at the lower neutron energies, because of the threshold effect.

Potential application to the neutron camera

Neutron camera system with PSPMT

- The neutron camera is a useful detector to search for any hidden fast-neutron sources.
- The energy of recoil nucleus by neutron - nucleus elastic scattering

$$
E = E_0 \frac{4A}{\left(1 + A\right)^2} \sin^2 \theta
$$

- Proton takes a half of neutron's energy $\mathcal{L}_1 = E_0 \sin^2 \theta$, $E_2 = E_0 \cos^2 \theta$
- Detector array #1 for the primary scattering A cone reconstruction to chase the direction Detector array #2 for the total absorption of the scattered neutron
- The angle of the neutron track is $\theta = \tan^{-1} \sqrt{\frac{L_1}{R}}$ *E* $\theta = \tan^{-1} \left| \frac{E_1}{E_2} \right|$
- We are developing the practical neutron camera as an application of the neutron detector.

2

Conclusions

- We have measurement of the light yields and the pulse (energy) resolutions as a function of the neutron energy by the TOF method.
- The data have been compared with the GEANT4 simulations : The pulse resolution increased with the neutron energy.
	- The spatial range for the absorption via the multiple scatterings increases as the neutron energy.
	- $-$ The relative strength of n-¹²C to n-p in the elastic scattering accounts for the worse resolutions at higher energies.
- We are developing the neutron camera as a potential application.

Potential application to the neutron camera

• The resolution for the scattering angle to determine the neutron direction

$$
\delta\theta = \frac{\cos^3\theta}{2\sin\theta} \frac{E_1}{E_2} \left\{ \left(\frac{\sigma_{E_1}}{E_1} \right)^2 + \left(\frac{\sigma_{E_2}}{E_2} \right)^2 \right\}^{1/2}
$$

- For example,
	- 2m from neutron source material
	- FWHM of scintillation fiber pixel is 0.35 $\rightarrow \frac{E}{E} = 0.15$
	- $\begin{array}{ccc} & \sigma_{\theta}^T\end{array}$ is 60 mrad \to the diameter of a cone is 24 $\,$ cm
	- If area of neutron scatter is 200 cm^2 , with 0.2 Hz detection, neutron source material weighs about 100 kg.

References

- Page 3 : www.symmetrymagazine.org/cms/?pid=1000102
- Page 4 : <http://www.ati.ac.at/~neutropt/experiments/Radiography/radiography.html>
- Original paper : JKPS 2009 54:586-591