QCD Phase Structure at High Baryon Density

T. Hatsuda (University of Tokyo)

<u>contents</u>

- Introduction
- Ginzburg-Landau-Wilson approach to QCD Phase Transitions^(1,2)
- Chiral-Super Interplay and Spectral Continuity in Dense QCD^(2,3)
- Correspondence between Ultra-cold Atoms and Dense QCD⁽⁴⁾
- Summary
 - (1) Tachibana, Yamamoto, Baym & T.H., Phys. Rev. Lett. 97 (2006) 122001.
 - (2) Yamamoto, Tachibana, Baym & T.H., Phys. Rev. D 76 (2007) 074001.
 - (3) Tachibana, Yamamoto & T.H., Phys. Rev. D 78 (2008) 011501.
 - (4) Maeda, Baym and T.H., in preparation (2009)

HIM meeting, April. 10, 2009

Quantum Chromo Dynamics

$$L = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \overline{q}\gamma^{\mu}(i\partial_{\mu} - gt^aA^a_{\mu})q - m\overline{q}q$$

QCD: SU(3) gauge theory for color charge

Y. Nambu

•SU(3) YM for strong interaction (Nambu '66)

 Asymptotic freedom (Gross, Wilczek & Politzer '73)

Confinement criterion
 (Wilson '74)

QCD vacuum and its symmetry

Chiral basis :
$$q_{\rm L} = \frac{1}{2}(1 - \gamma_5)q, \quad q_{\rm R} = \frac{1}{2}(1 + \gamma_5)q$$

QCD Lagrangian :

$$\mathcal{L}_{\rm cl} = \mathcal{L}_{\rm cl}(q_{\rm L}, A) + \mathcal{L}_{\rm cl}(q_{\rm R}, A)$$

classical QCD symmetry (m=0)

 $\mathcal{G} = SU(3)_C \times [SU(N_f)_L \times SU(N_f)_R] \times U(1)_B \times U(1)_A$

Phases in QCD

 μ_B

Dirac mass vs. Majorana mass

$$\Psi = (q, q^C)^t$$

$$L_{\rm eff} = \frac{1}{2} \overline{\Psi} \begin{pmatrix} i\gamma \cdot \partial - \Phi & \overline{\Delta} \\ \Delta & i\gamma \cdot \overline{\partial} - \Phi \end{pmatrix} \Psi$$

Nambu-Gor'kov = Hartree-Fock-Bogoliubov = Dirac-Majorana (cond-mat) (nucl-th) (hep-ph)

$$\Phi_{ij} \sim \left\langle \bar{q}_{j} q_{i} \right\rangle, \quad \Delta_{ij}^{ab} \sim \left\langle q_{i}^{a} C q_{j}^{b} \right\rangle$$

Dirac mass

Majorana mass

$$SU(3)_C \times [SU(3)_L \times SU(3)_R] \times U(1)_B$$

Symmetry realization in hot/dense QCD (for m_{u,d,s}=0 case)

Nambu, PRL 4 (1960)

Alford, Rajagopal & Wilczek, NP B537 (1999)

QCD and high temperature superconductivity (HTS)

Common features in QCD, HTS, and cold atoms

- 1. Competition between different orders
- 2. Strong coupling
- Babaev, Int. J. Mod. Phys. A16 ('01)
- Kitazawa, Nemoto, Kunihiro, PTP ('02)
- Abuki, Itakura & Hatsuda, PRD ('02)
- Chen, Stajic, Tan & Levin, Phys. Rep. ('05)
- Baym, Hatsuda, Tachibana & Yamamoto (2008)

New Critical Point Induced By the Axial Anomaly in Dense QCD

Tetsuo Hatsuda,¹ Motoi Tachibana,² Naoki Yamamoto,¹ and Gordon Baym³ ¹Department of Physics, University of Tokyo, Japan ²Department of Physics, Saga University, Saga 840-8502, Japan ³Department of Physics, University of Illinois, 1110 W. Green St., Urbana, Illinois 61801, USA (Received 10 May 2006; published 18 September 2006)

We study the interplay between chiral and diquark condensates within the framework of the Ginzburg-Landau free energy, and classify possible phase structures of two and three-flavor massless QCD. The QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and leads to a crossover between the broken chiral symmetry and the color superconducting phase, and, in particular, to a new critical point in the QCD phase diagram.

DOI: 10.1103/PhysRevLett.97.122001

PACS numbers: 12.38.-t, 26.60.+c

PRL 99, 130406 (2007)

PHYSICAL REVIEW LETTERS

week ending 28 SEPTEMBER 2007

Superfluidity and Magnetism in Multicomponent Ultracold Fermions

R. W. Cherng,¹ G. Refael,² and E. Demler¹

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 2 May 2007; published 28 September 2007)

We study the interplay between superfluidity and magnetism in a multicomponent gas of ultracold fermions. Ward-Takahashi identities constrain possible mean-field states describing order parameters for both pairing and magnetization. The structure of global phase diagrams arises from competition among these states as functions of anisotropies in chemical potential, density, or interactions. They exhibit first and second order phase transition as well as multicritical points, metastability regions, and phase separation. We comment on experimental signatures in ultracold atoms.

DOI: 10.1103/PhysRevLett.99.130406

PACS numbers: 05.30.Jp, 03.75.Mn, 03.75.Ss

Chiral Transition at Finite T

How to study QCD phase transition ?

Ginzburg-Landau-Wilson (GLW) approach : model independent, analytic

- 1. Topological structure of the phase diagram
- 2. Order of the phase transition
- 3. Critical properties

$$Z = \int [d\sigma] \exp\left(-\int d\mathbf{x} \ \mathcal{L}_{\text{eff}}(\sigma(\mathbf{x}); K)\right)$$

 $\mathcal{L}_{\text{eff}} = \frac{1}{2} (\nabla \sigma)^2 + \sum a_n(K) \sigma^n$

 $\sigma(\mathbf{x})$: Order parameter field

Same symmetry with underlying theory $K = \{T, m, \mu, ...\}$: External parameters

Ginzburg-Landau = Saddle point approximation Wilson = Fluctuations in renormalization group method

Recipe

Caution

- Valid for continuous or weak 1st order transitions
- Choice of $\sigma(\mathbf{x})$ is an "art"
- Results should be eventually checked by lattice QCD

Some examples of GL potential

- 2nd order phase transition

$$\mathcal{V} = \frac{1}{2}a\sigma^2 + \frac{1}{4}b\sigma^4$$

1st order phase transition

$$\mathcal{V} = \frac{1}{2}a\sigma^2 - \frac{1}{3}c\sigma^3 + \frac{1}{4}b\sigma^4$$

Z(3) Potts model N_f=3 QCD

Tri-critical behavior

$$\mathcal{V} = \frac{1}{2}a\sigma^2 + \frac{1}{4}b\sigma^4 + \frac{1}{6}c\sigma^6$$

Meta-magnet $N_f=2+1$ QCD

GLW analysis of hot QCD

$$\begin{split} \text{Symmetry:} \quad SU(3)_C \times [SU(N_f)_L \times SU(N_f)_R] \times U(1)_B \times \swarrow)_A \\ \text{Chiral field:} \quad \Phi_{ij} \sim \frac{1}{2} \bar{q}^j (1 - \gamma_5) q^i = \bar{q}_R^{\ j} q_L^i \\ \text{Chiral transformation:} \quad \Phi \to e^{-2i\alpha_A} \ V_L \ \Phi \ V_R^{\dagger} \\ \hline \mathcal{L}_{\text{eff}} = \frac{1}{2} \ \text{tr} \ \partial \Phi^{\dagger} \partial \Phi + \frac{a}{2} \ \text{tr} \ \Phi^{\dagger} \Phi \\ & + \frac{b_1}{4!} \left(\text{tr} \ \Phi^{\dagger} \Phi \right)^2 + \frac{b_2}{4!} \ \text{tr} \left(\Phi^{\dagger} \Phi \right)^2 \\ & - \frac{c}{2} \left(\det \Phi + \det \Phi^{\dagger} \right) \\ & - \frac{1}{2} \ \text{tr} \ h(\Phi + \Phi^{\dagger}). \end{split} \\ \begin{array}{c} \text{SU}(N_f)_L \times \text{SU}(N_f)_R \\ \text{quark mass term} \\ \end{array}$$

Thermal Transition on the Lattice: (2+1)-flavor, KS fermion, m_{π} =220 MeV

Lattice QCD: Cheng et al., Phys. Rev. D77 (2008) 014511

Chiral-super interplay at finite µ

Color superconductivity at high density

major differences from the standard BCS superconductor

1. Relativistic fermi system color-magnetic int. dominant

Son, PRD59 ('99), Schafer & Wilczek, PRD60 ('99) Pisarski & Rischke, PRD61 ('00)

Color-flavor entanglement

 d_{ia}

2.

 $|d| \sim \varepsilon_{\mathsf{F}} \ e^{-c/\sqrt{\alpha_s}}$

 $\begin{cases} High T_c : T_c / \epsilon_F \sim 0.1 \\ Compact pair : r \sim 1-10 \text{ fm} \end{cases}$

Various phases (c.f. Ice, ³He) 2SC, uSC, dSC, CFL etc

Color superconductivity at high density

GL analysis for chiral-super interplay in QCD ($N_f=3$)

Symmetry: $SU(3)_C \times [SU(3)_L \times SU(3)_R] \times U(1)_B \times U(1)_A$

Complete classification of the GL potential (m=0)

$$\begin{aligned} \mathcal{V}_{\chi} &= \frac{a_0}{2} \mathrm{tr} \, \Phi^{\dagger} \Phi + \frac{b_1}{4!} \left(\mathrm{tr} \, \Phi^{\dagger} \Phi \right)^2 + \frac{b_2}{4!} \mathrm{tr} \left(\Phi^{\dagger} \Phi \right)^2 \\ &- \frac{c_0}{2} \left(\mathrm{det} \Phi + \mathrm{det} \Phi^{\dagger} \right) \\ &- \frac{c_0}{2} \left(\mathrm{det} \Phi + \mathrm{det} \Phi^{\dagger} \right) \\ \mathcal{V}_{d} &= \alpha_0 \, \mathrm{tr} [d_L d_L^{\dagger} + d_R d_R^{\dagger}] \\ &+ \beta_1 \left([\mathrm{tr} (d_L d_L^{\dagger})]^2 + [\mathrm{tr} (d_R d_R^{\dagger})]^2 \right) \\ &+ \beta_2 \left(\mathrm{tr} [(d_L d_L^{\dagger})^2] + \mathrm{tr} [(d_R d_R^{\dagger})^2] \right) \\ &+ \beta_3 \, \mathrm{tr} [(d_R d_L^{\dagger}) (d_L d_R^{\dagger})] + \beta_4 \, \mathrm{tr} (d_L d_L^{\dagger}) \mathrm{tr} (d_R d_R^{\dagger}) \\ &\mathcal{V}_{\chi d} &= \frac{\gamma_1 \, \mathrm{tr} [(d_R d_L^{\dagger}) \Phi + (d_L d_R^{\dagger}) \Phi^{\dagger}] \\ &+ \lambda_1 \, \mathrm{tr} [(d_L d_L^{\dagger}) \Phi \Phi^{\dagger} + (d_R d_R^{\dagger}) \Phi^{\dagger} \Phi] \\ &+ \lambda_2 \, \mathrm{tr} [d_L d_L^{\dagger} + d_R d_R^{\dagger}] \cdot \mathrm{tr} [\Phi^{\dagger} \Phi] \\ &+ \lambda_3 \left(\mathrm{det} \Phi \cdot \mathrm{tr} [(d_L d_R^{\dagger}) \Phi^{-1}] + h.c \right) \end{aligned}$$

<u>Chiral-CFL interplay in N_f=3</u> $\Phi = \begin{pmatrix} \sigma & \\ & \sigma \\ & & \sigma \end{pmatrix} \qquad \qquad d_L = -d_R = \begin{pmatrix} d & \\ & d \\ & & d \end{pmatrix}$

$$\mathcal{V} = \left(\frac{a}{2}\sigma^2 - \frac{c}{3}\sigma^3 + \frac{b}{4}\sigma^4\right) + \left(\frac{\alpha}{2}d^2 + \frac{\beta}{4}d^4\right) - \gamma d^2\sigma + \lambda d^2\sigma^2$$

 $\begin{array}{l} \text{Natural} \\ \text{parameter} \\ \text{relations} \end{array} \left\{ \begin{array}{l} \beta > 0, \ b > 0 \\ \gamma \sim c > 0 \\ 1 \gg \lambda/\beta > 0 \end{array} \right.$

phase diagram (without d-σ coupling)

$$\mathcal{V} = \left(\frac{a}{2}\sigma^2 - \frac{c}{3}\sigma^3 + \frac{b}{4}\sigma^4\right) + \left(\frac{\alpha}{2}d^2 + \frac{\beta}{4}d^4\right) - \gamma d^2\sigma$$

<u>phase diagram (with d-σ coupling)</u>

$$\mathcal{V} = \left(\frac{a}{2}\sigma^2 - \frac{c}{3}\sigma^3 + \frac{b}{4}\sigma^4\right) + \left(\frac{\alpha}{2}d^2 + \frac{\beta}{4}d^4\right) - \frac{\gamma d^2\sigma}{\gamma d^2\sigma}$$

A new critical point driven by the axial anomaly

Frequently asked questions

- 1. Location of the new critical point in physical unit ?
 - No definite answer at present
 - NJL & PNJL model calculation underway
- 2. Connection to baryon superfluidity at low μ ?
 - Mechanism for the crossover from <q²> to <q³q³> similar to bose-fermi mixture in cold atoms

(Maeda, Baym & TH)

Spectral continuity at finite µ

Continuity in the ground state

Continuity in the excited state??

excitation	Low µ	High μ		
NGs	π (8) & H	π′ (8) & H		
Vectors	V (9)	gluons (8)		
Fermions	baryons (8)	Quarks (9)		
Schafer and Wilczek, PRL 82 (1999)				

Explicit realization of spectral continuity

O Generalized Gell-Mann-Oakes-Renner relation :

$$m_{\tilde{\pi}}^2 \simeq \frac{m_q}{f_{\pi}^2 + f_{\pi'}^2} \begin{bmatrix} \alpha \langle \bar{q}q \rangle + \beta \langle qq \rangle^2 \end{bmatrix}$$
 Yama Baym

Yamamoto, Tachibana, Baym + T.H., PR D76 ('07)

 $^{m O}$ Gauge invariant method to show the continuity of vector mesons

In-medium QCD sum rules

T.H., Tachibana and Yamamoto, PRD78 (2008) QCD sum rules in the superconducting medium

> Vector current:
$$J^{(8)}_{\mu} = \bar{q}\tau^a \gamma_{\mu}q$$
, $J^{(1)}_{\mu} = \bar{q}\tau^0 \gamma_{\mu}q$

Current correlation function:

$$\Pi_{\mu\nu}(q) = i \int d^4x e^{iqx} \langle RJ_{\mu}(x)J_{\nu}(0) \rangle$$

> Operator Product Expansion (OPE) up to $O(1/Q^6)$:

4-quark condensate

 $\langle (\bar{q}\Gamma q)(\bar{q}\Gamma q) \rangle$

Mass formula from Finite Energy Sum Rules

At low density:

$$\left(m_{\rm V}^{-}\right)^2 \rightarrow \left(\frac{448\pi^3\alpha_s}{27}\langle\bar{q}q\rangle^2\right)^{1/3}$$

At intermediate density:

$$\left(m_{\rm V}^{(8)}\right)^2 \simeq \frac{56\pi^3 \alpha_s}{81\mu^4} \left(\langle \bar{q}q \rangle^2 + \frac{15}{7} \langle qq \rangle^2\right)$$

$$\left(m_{\rm V}^{(1)}\right)^2 \simeq \frac{1}{f} \frac{56\pi^3 \alpha_s}{81\mu^4} \left(\langle \bar{q}q \rangle^2 - \frac{66}{7} \langle qq \rangle^2\right)$$

At high density:

$$m_{\rm V}^{(8)} \to \sqrt{\frac{20}{3}} \ \Delta \simeq 2.6 \Delta$$

T.H., Tachibana and Yamamoto, PRD78 (2008)

Octet gluons in CFL: $m_g = 1.362\Delta$ Gusynin & Shovkovy, NPA700 (2002) Malekzadeh & Rischke, PRD73 (2006)

UCA/QCD correspondence

Possibility to simulate BCS-BEC-HAD crossover

using <u>boson-fermion mixture</u> or <u>fermion with three species</u> in cold atoms ?

T[K] •		
10 ¹²	Quark-gluon plasma	
10 ⁹	Superfluid neutron matter	
10 ⁷	Center of sun	
10 ² 10 1	Boiling water Freezing water Liquid nitrogen Superfluid, superconductor	
10 ⁻³	Superfluid of ³ He	<u>Ultracold Atoms (UcA)</u> •T ~ 10 ⁻⁷ K
10 ⁻⁷	Ultracold atoms	 hyperfine states magnetically controllable density 10¹⁴ - 10¹⁵ cm⁻³
		(cf. Air ~ 10 ¹⁹ cm ⁻³)

Bose-Fermi mixture in Ultracold Atoms and Dense QCD -- Induced superfluidity of composite-fermions --

Phases of attractively interacting boson-fermion mixtures

Kenji Maeda,¹ Gordon Baym,², and Tetsuo Hatsuda¹

¹Department of Physics, University of Tokyo, Japan

²Department of Physics, University of Illinois, 1110 W. Green St., Urbana, Illinois 61801, USA

We study a many-body mixture of an equal number of bosons (b) and fermions (f) in two hyperfine states, and having a tunable boson-fermion (b-f) attraction. For weak b-f attraction, the system is a mixture of a Bose condensate and degenerate fermions interacting through density fluctuations, while for strong b-f attraction, the system forms degenerate composite fermions, N=(bf), which are superfluid due to the N-N attaction in the spin singlet channel. We delineate the possible phase structure of the mixture and its symmetry breaking pattern at finite temperature as a function of the b-f coupling strength. The relevance of the results to cold atomic systems and the dense quark matter is also discussed.

$$\mathcal{H} = \frac{1}{2m_{\rm b}} \nabla \phi^*(x) \cdot \nabla \phi(x) - \mu_{\rm b} \phi^*(x) \phi(x) + \frac{1}{2} g_{\rm bb} |\phi(x)|^4$$

$$+ \frac{1}{2m_{\rm f}} \nabla \psi^{\dagger}_{\sigma}(x) \cdot \nabla \psi_{\sigma}(x) - \mu_{\rm f} \psi^{\dagger}_{\sigma}(x) \psi_{\sigma}(x)$$

$$+ \frac{1}{2} g_{\rm ff} \psi^{\dagger}_{\sigma}(x) \psi_{\sigma}(x) \psi^{\dagger}_{-\sigma}(x) \psi_{-\sigma}(x)$$

$$+ g_{\rm bf} |\phi(x)|^2 \psi^{\dagger}_{\sigma}(x) \psi_{\sigma}(x) .$$

$$a_{\rm NN}^{\rm Born} = \frac{m_{\rm N}}{4\pi} T_{\rm N}(\mathbf{0}, \mathbf{0}) = -\frac{m_{\rm N}}{2m_{\rm R}} a_{\rm bf} .$$

$$T_{\rm c}({\rm N-BCS}) = \frac{\gamma}{\pi} \left(\frac{2}{e}\right)^{7/3} \varepsilon_{\rm N} \exp\left(\frac{\pi}{2k_{\rm F}a_{\rm NN}}\right)$$

Y. Nambu, Nobel Lecture (Dec.8, 2008), page 24/25

Hierarchical spontaneous symmetry breaking Y. Nambu, *Masses as a problem and as a clue*, May 2004

> The BCS mechanism is most relevant to the mass problem because introduces an energy (mass) gap for fermions, and the Goldstone and Higgs modes as low-lying bosonic states. An interesting feature of the SSB is the possibility of <u>hierarchical SSB or "tumbling"</u>. Namely an SSB can be a cause for another SSB at lower <u>energy scale</u>.

... [examples are]

1. the chain crystal-phonon-superconductivity. ... Its NG mode is the phonon which then induces the Cooper pairing of electrons to cause superconductivity.

2. the chain QCD-chiral SSB of quarks and hadrons- π and σ mesons-nuclei formation and nucleon pairing-nuclear π and σ modes-nuclear collective modes. Summary and Future

1. QCD phase structure

- Three major phases in QCD: $\chi SB,\ QGP$ and CSC
- Axial anomaly plays crucial roles everywhere
- Close similarity with high Tc supercond. & multi-comp. cold atoms
- 2. Chiral-super interplay driven by axial anomaly
 - A new critical point at low T and high μ
 - Continuity of XSB phase and CSC phase
- 3. Spectral continuity in high density QCD
 - · Pions are pions.
 - Vector mesons are gluons.

4. Future

- Real location of the new critical point ?
- How to detect critical lines and points in lab. experiment ?
- Tabletop simulations of high density QCD using cold atoms ?

