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Short introduction to PARTON CASCADE

1. We have N classical particles (partons on mass shell) in phase 

space (position and momentum)

2. They will evolve under the influence of nearby particles (or 

internal forces) and/or external field

3. Occasionally they will come close to each other and make 

scatterings (phase space and number of particles changing)

4. They move on with new momentum after collision

-> NOTHING NEW BUT PUT SOMETHINGS TOGETHER

TO UNDERSTAND PHYSICS
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1. BRICK problem

• HOW DO WE KNOW THE PROPERTIES of QGP? 

(Temperature, Volume, Entropy, …)

→Well controlled experiments or simulations to setup standards

→ Strongly pushed by Berndt Mueller

• QGP at temp T in a BOX and Pass a JET (high energy parton) 

through the QGP – JET Quenching

• Investigate the JET and response of the QGP: Ideal tool for 

this study is HYDRODYNAMICS with JET (DUKE GROUP 

works on the problem)

• But let us try with PCS(Parton Cascade Simulation)
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2. Initial STATE: Gluon Plasma

• Phase Space Distribution: Bose-Einstein

• Box Size:

a. Number Density:

b. Energy Density:

c. Debye Mass:
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(Monte Carlo Sampling)

• Integral Method:

• Dart Method:
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3. Cross Section

We consider only gg → gg, gg → ggg

• 2->2:

• 2->3:
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NOTE: 10/GeV^2=4mb
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4. The Properties of JET

A. Only ELASTIC SCATTERING:

1. Energy Loss: 

• Impressive Calculation by Duke Group, including medium response to the fast 
parton based on Kinetic Theory by Asakawa, Bass and Mueller and by 
Neufeld and Mueller:

• Collisional Dynamics Calculation:

= 1.42 GeV/fm, or 3.32 GeV/fm, E=100GeV and T=400MeV

= 1.25 GeV/fm, or 2.98 GeV/fm, E=  60GeV and T=400MeV
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Note the average CM energy between Jet and a medium particle:

For example,

E_cm =  7.2 GeV,  E=  30GeV on T=0.4GeV

= 10.2 GeV, E=  60GeV on T=0.4GeV

= 13.1 GeV, E=100GeV on T=0.4GeV
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• Momentum Transfer squared & Transport Coefficient

= 2.55 GeV^2/fm, E=100GeV & T=400MeV

= 2.15 GeV^2/fm, E=  60GeV & T=400MeV 

Measurement:
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B. Including INELASTIC SCATTERING:
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C. Energy Spectrum: after D
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5. Medium Properties

A. Number Density:
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6. Discussions and Conclusions

• Energy Loss to Elastic scattering has been 
calculated to the theoretical value

• Radiation energy loss is far greater than elastic 
collisions

• Mach cone like structure has been seen but 
not conclusive
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