Silicon sensor module production

for PHENIX FOCAL

S.H. Lim Yonsei University

- Introduction
 - PHENIX FOCAL
 - Silicon pad sensor
- Micro-module production
 - Components & Structure
 - Wafer dicing
 - Gluing process
 - Results
- Summary & Outlook

- Introduction
 - PHENIX FOCAL
 - Silicon pad sensor
- Micro-module production
 - Components & Structure
 - Wafer dicing
 - Gluing process
 - Results
- Summary & Outlook

DHENIX FOCAL

- FOCAL is a FOrward CALorimeter for PHENIX experiment.
- Two types of silicon sensors
 - Strip and pad sensor
- Beam test at CERN is planned in June.

Silicon pad sensor

•Basically PN junction diode in reverse bias mode.

•N-type substrate and p-type pattern for high energy application => electrons are carriers

•16 square(1.5cm×1.5cm) pads in one micro-module

Sensor operation

Reverse bias => Depletion Region

Leakage current

- Reasons
 - Thermal excitation
 - Bulk defect
 - Surface defect
- IV characteristics

 Sensor quality monitoring

•IV measurement data

- Introduction
 - PHENIX FOCAL
 - Silicon pad sensor
- Micro-module production
 - Components & Structure
 - Wafer Dicing
 - Gluing process
 - Results
- Summary & Outlook

Micro-module schematics

Components for micro-module

Ceramic spacer

- Protection from warping and heat
- INTC(Inter connect) board
 - Electrical connection to sensor

Silicon Sensor

Cu foil

- Connection of sensor back plane to ground
- Epoxy plate
 - Electrical and physical protection

Wafer Dicing

 electric shock and moisture absorption can degrade sensors

=> IV characteristics monitoring

IV characteristics after dicing

•Avg. leakage current at 150V

•32nA -> 30nA

Before dicing

No major variation => procedure validation

After dicing

Gluing Process

- Gluing process
 - 3 Steps
 - 1 day for each step

Yonsei Nuclear Physics Lab.

Glue properties

Company	15		
Material	Ероху		Silver epoxy
Color / appearance	Creamy liquid Amber liquid		Bright silver Gray silver
Specific gravity	1.17 /Resin 0.92 /Hardener	1.05	2.85
Feature	Araldite Mandenker HV SSS U HANDENker HV SSS U HANDENker HV SSS U	<section-header></section-header>	CONDUCTIVE Poxy Or Data

Production results

4 sample micro-module production has completed.
Mechanical and electrical issues have been checked

IV characteristics after gluing

•Avg. leakage current at 150V

•74nA -> 90nA

•Little variation => procedure validation

Before Gluing

After Gluing

Introduction

- PHENIX FOCAL
- Silicon pad sensor
- Micro-module production
 - Components & Structure
 - Dicing process
 - Gluing process
 - Results
- Summary & Outlook

Summary & Outlook

- We completed a cycle of micro-module production successfully up to requirement.
- cosmic muon tests are in preparation.

THE END

THANK YOU